The Role of MicroRNAs in Human Diseases

  • Kemal Uğur Tüfekci
  • Meryem Gülfem Öner
  • Ralph Leo Johan Meuwissen
  • Şermin Genç
Part of the Methods in Molecular Biology book series (MIMB, volume 1107)


About 20 years have passed since the discovery of the first microRNA (miRNA) and by now microRNAs are implicated in a variety of physiological and pathological processes. Since the discovery of the powerful effect miRNAs have on biological processes, it has been suggested that mutations affecting miRNA function may play a role in the pathogenesis of human diseases. Over the past several years microRNAs have been found to play a major role in various human diseases. In addition, many studies aim to apply miRNAs for diagnostic and therapeutic applications in human diseases. In this chapter, we summarize the role of miRNAs in pathological processes and discuss how miRNAs could be used as disease biomarkers.


Biomarker Human disease Exosome Mutation Circulating miRNA Single nucleotide polymorphism Copy number variation 


  1. 1.
    Ha TY (2011) MicroRNAs in human diseases: from cancer to cardiovascular disease. Immune Netw 11:135–154PubMedGoogle Scholar
  2. 2.
    Reid G, Kirschner MB, van Zandwijk N (2011) Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 80:193–208PubMedGoogle Scholar
  3. 3.
    Duan S, Mi S, Zhang W et al (2009) Comprehensive analysis of the impact of SNPs and CNVs on human microRNAs and their regulatory genes. RNA Biol 6:412–425PubMedGoogle Scholar
  4. 4.
    Lin CH, Li LH, Ho SF et al (2008) A large-scale survey of genetic copy number variations among Han Chinese residing in Taiwan. BMC Genet 9:92PubMedGoogle Scholar
  5. 5.
    Wong KK, deLeeuw RJ, Dosanjh NS et al (2007) A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80:91–104PubMedGoogle Scholar
  6. 6.
    Miller DT, Shen Y, Weiss LA et al (2009) Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders. J Med Genet 46:242–248PubMedGoogle Scholar
  7. 7.
    de Pontual L, Yao E, Callier P et al (2011) Germline deletion of the miR-17 approximately 92 cluster causes skeletal and growth defects in humans. Nat Genet 43:1026–1030PubMedGoogle Scholar
  8. 8.
    Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529PubMedGoogle Scholar
  9. 9.
    Corthals SL, Jongen-Lavrencic M, de Knegt Y et al (2010) Micro-RNA-15a and micro-RNA-16 expression and chromosome 13 deletions in multiple myeloma. Leuk Res 34:677–681PubMedGoogle Scholar
  10. 10.
    Porkka KP, Ogg EL, Saramaki OR et al (2011) The miR-15a-miR-16-1 locus is homozygously deleted in a subset of prostate cancers. Genes Chromosomes Cancer 50:499–509PubMedGoogle Scholar
  11. 11.
    Sonoki T, Iwanaga E, Mitsuya H et al (2005) Insertion of microRNA-125b-1, a human homologue of lin-4, into a rearranged immunoglobulin heavy chain gene locus in a patient with precursor B-cell acute lymphoblastic leukemia. Leukemia 19:2009–2010PubMedGoogle Scholar
  12. 12.
    Bousquet M, Quelen C, Rosati R et al (2008) Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med 205:2499–2506PubMedGoogle Scholar
  13. 13.
    Drake KM, Ruteshouser EC, Natrajan R et al (2009) Loss of heterozygosity at 2q37 in sporadic Wilms’ tumor: putative role for miR-562. Clin Cancer Res 15:5985–5992PubMedGoogle Scholar
  14. 14.
    Pasmant E, de Saint-Trivier A, Laurendeau I et al (2008) Characterization of a 7.6-Mb germline deletion encompassing the NF1 locus and about a hundred genes in an NF1 contiguous gene syndrome patient. Eur J Hum Genet 16:1459–1466PubMedGoogle Scholar
  15. 15.
    Haller F, von Heydebreck A, Zhang JD et al (2010) Localization- and mutation-dependent microRNA (miRNA) expression signatures in gastrointestinal stromal tumours (GISTs), with a cluster of co-expressed miRNAs located at 14q32.31. J Pathol 220:71–86PubMedGoogle Scholar
  16. 16.
    Davidson MR, Larsen JE, Yang IA et al (2010) MicroRNA-218 is deleted and downregulated in lung squamous cell carcinoma. PLoS One 5:e12560PubMedGoogle Scholar
  17. 17.
    Calin GA, Ferracin M, Cimmino A et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801PubMedGoogle Scholar
  18. 18.
    Harnprasopwat R, Ha D, Toyoshima T et al (2010) Alteration of processing induced by a single nucleotide polymorphism in pri-miR-126. Biochem Biophys Res Commun 399:117–122PubMedGoogle Scholar
  19. 19.
    Jazdzewski K, Murray EL, Franssila K et al (2008) Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci U S A 105:7269–7274PubMedGoogle Scholar
  20. 20.
    Ryan BM, Robles AI, Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10:389–402PubMedGoogle Scholar
  21. 21.
    Shen J, Ambrosone CB, DiCioccio RA et al (2008) A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis 29: 1963–1966PubMedGoogle Scholar
  22. 22.
    Ye Y, Wang KK, Gu J et al (2008) Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res (Phila) 1:460–469Google Scholar
  23. 23.
    Clague J, Lippman SM, Yang H et al (2010) Genetic variation in MicroRNA genes and risk of oral premalignant lesions. Mol Carcinog 49:183–189PubMedGoogle Scholar
  24. 24.
    Guo H, Wang K, Xiong G et al (2010) A functional variant in microRNA-146a is associated with risk of esophageal squamous cell carcinoma in Chinese Han. Fam Cancer 9:599–603PubMedGoogle Scholar
  25. 25.
    Permuth-Wey J, Thompson RC, Burton Nabors L et al (2011) A functional polymorphism in the pre-miR-146a gene is associated with risk and prognosis in adult glioma. J Neurooncol 105:639–646PubMedGoogle Scholar
  26. 26.
    Xu B, Feng NH, Li PC et al (2010) A functional polymorphism in Pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression in vivo. Prostate 70:467–472PubMedGoogle Scholar
  27. 27.
    Zhan JF, Chen LH, Chen ZX et al (2011) A functional variant in microRNA-196a2 is associated with susceptibility of colorectal cancer in a Chinese population. Arch Med Res 42:144–148PubMedGoogle Scholar
  28. 28.
    Mencia A, Modamio-Hoybjor S, Redshaw N et al (2009) Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet 41:609–613PubMedGoogle Scholar
  29. 29.
    Luo X, Yang W, Ye DQ et al (2011) A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet 7:e1002128PubMedGoogle Scholar
  30. 30.
    Peng S, Kuang Z, Sheng C et al (2010) Association of microRNA-196a-2 gene polymorphism with gastric cancer risk in a Chinese population. Dig Dis Sci 55:2288–2293PubMedGoogle Scholar
  31. 31.
    Kuhn S, Johnson SL, Furness DN et al (2011) miR-96 regulates the progression of differentiation in mammalian cochlear inner and outer hair cells. Proc Natl Acad Sci U S A 108:2355–2360PubMedGoogle Scholar
  32. 32.
    Felekkis K, Voskarides K, Dweep H et al (2011) Increased number of microRNA target sites in genes encoded in CNV regions. Evidence for an evolutionary genomic interaction. Mol Biol Evol 28:2421–2424PubMedGoogle Scholar
  33. 33.
    Gong J, Tong Y, Zhang HM et al (2012) Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat 33:254–263PubMedGoogle Scholar
  34. 34.
    Clop A, Marcq F, Takeda H et al (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818PubMedGoogle Scholar
  35. 35.
    Shao GC, Luo LF, Jiang SW et al (2011) A C/T mutation in microRNA target sites in BMP5 gene is potentially associated with fatness in pigs. Meat Sci 87:299–303PubMedGoogle Scholar
  36. 36.
    Abelson JF, Kwan KY, O’Roak BJ et al (2005) Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science 310: 317–320PubMedGoogle Scholar
  37. 37.
    Wang G, van der Walt JM, Mayhew G et al (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82:283–289PubMedGoogle Scholar
  38. 38.
    Chin LJ, Ratner E, Leng S et al (2008) A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res 68:8535–8540PubMedGoogle Scholar
  39. 39.
    Nelson HH, Christensen BC, Plaza SL et al (2010) KRAS mutation, KRAS-LCS6 polymorphism, and non-small cell lung cancer. Lung Cancer 69:51–53PubMedGoogle Scholar
  40. 40.
    Brendle A, Lei H, Brandt A et al (2008) Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: ITGB4 as prognostic marker. Carcinogenesis 29:1394–1399PubMedGoogle Scholar
  41. 41.
    Mishra PJ, Humeniuk R, Mishra PJ et al (2007) A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci U S A 104:13513–13518PubMedGoogle Scholar
  42. 42.
    Scotto L, Narayan G, Nandula SV et al (2008) Integrative genomics analysis of chromosome 5p gain in cervical cancer reveals target over-expressed genes, including Drosha. Mol Cancer 7:58PubMedGoogle Scholar
  43. 43.
    Rotunno M, Zhao Y, Bergen AW et al (2010) Inherited polymorphisms in the RNA-mediated interference machinery affect microRNA expression and lung cancer survival. Br J Cancer 103:1870–1874PubMedGoogle Scholar
  44. 44.
    Zhang X, Yang H, Lee JJ et al (2010) MicroRNA-related genetic variations as predictors for risk of second primary tumor and/or recurrence in patients with early-stage head and neck cancer. Carcinogenesis 31:2118–2123PubMedGoogle Scholar
  45. 45.
    Melo SA, Moutinho C, Ropero S et al (2010) A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18:303–315PubMedGoogle Scholar
  46. 46.
    Melo SA, Ropero S, Moutinho C et al (2009) A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41:365–370PubMedGoogle Scholar
  47. 47.
    Yang H, Dinney CP, Ye Y et al (2008) Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. Cancer Res 68:2530–2537PubMedGoogle Scholar
  48. 48.
    Horikawa Y, Wood CG, Yang H et al (2008) Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin Cancer Res 14: 7956–7962PubMedGoogle Scholar
  49. 49.
    Liang D, Meyer L, Chang DW et al (2010) Genetic variants in microRNA biosynthesis pathways and binding sites modify ovarian cancer risk, survival, and treatment response. Cancer Res 70:9765–9776PubMedGoogle Scholar
  50. 50.
    Sato F, Tsuchiya S, Meltzer SJ et al (2011) MicroRNAs and epigenetics. FEBS J 278: 1598–1609PubMedGoogle Scholar
  51. 51.
    Pigazzi M, Manara E, Baron E et al (2009) miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res 69:2471–2478PubMedGoogle Scholar
  52. 52.
    Roman-Gomez J, Agirre X, Jimenez-Velasco A et al (2009) Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol 27:1316–1322PubMedGoogle Scholar
  53. 53.
    Tang JT, Wang JL, Du W et al (2011) MicroRNA 345, a methylation-sensitive microRNA is involved in cell proliferation and invasion in human colorectal cancer. Carcinogenesis 32:1207–1215PubMedGoogle Scholar
  54. 54.
    Brueckner B, Stresemann C, Kuner R et al (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67:1419–1423PubMedGoogle Scholar
  55. 55.
    Lu L, Katsaros D, de la Longrais IA et al (2007) Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 67:10117–10122PubMedGoogle Scholar
  56. 56.
    Langevin SM, Stone RA, Bunker CH et al (2011) MicroRNA-137 promoter methylation is associated with poorer overall survival in patients with squamous cell carcinoma of the head and neck. Cancer 117:1454–1462PubMedGoogle Scholar
  57. 57.
    Lujambio A, Calin GA, Villanueva A et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 105:13556–13561PubMedGoogle Scholar
  58. 58.
    Wang P, Chen L, Zhang J et al (2013) Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene. doi: 10.1038/onc.2012.598 Google Scholar
  59. 59.
    Gebauer K, Peters I, Dubrowinskaja N et al (2013) Hsa-mir-124-3 CpG island methylation is associated with advanced tumours and disease recurrence of patients with clear cell renal cell carcinoma. Br J Cancer 108:131–138PubMedGoogle Scholar
  60. 60.
    Asuthkar S, Velpula KK, Chetty C et al (2012) Epigenetic regulation of miRNA-211 by MMP-9 governs glioma cell apoptosis, chemosensitivity and radiosensitivity. Oncotarget 3:1439–1454PubMedGoogle Scholar
  61. 61.
    Geng J, Luo H, Pu Y et al (2012) Methylation mediated silencing of miR-23b expression and its role in glioma stem cells. Neurosci Lett 528:185–189PubMedGoogle Scholar
  62. 62.
    Hulf T, Sibbritt T, Wiklund ED et al (2012) Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer. Oncogene. doi: 10.1038/onc.2012.300 Google Scholar
  63. 63.
    Li Y, Kong D, Ahmad A et al (2012) Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics 7:940–949PubMedGoogle Scholar
  64. 64.
    Augoff K, McCue B, Plow EF et al (2012) miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer 11:5PubMedGoogle Scholar
  65. 65.
    Minor J, Wang X, Zhang F et al (2012) Methylation of microRNA-9 is a specific and sensitive biomarker for oral and oropharyngeal squamous cell carcinomas. Oral Oncol 48:73–78PubMedGoogle Scholar
  66. 66.
    Incoronato M, Urso L, Portela A et al (2011) Epigenetic regulation of miR-212 expression in lung cancer. PLoS One 6:e27722PubMedGoogle Scholar
  67. 67.
    Munker R, Calin GA (2011) MicroRNA profiling in cancer. Clin Sci (Lond) 121:141–158Google Scholar
  68. 68.
    Lebanony D, Benjamin H, Gilad S et al (2009) Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J Clin Oncol 27:2030–2037PubMedGoogle Scholar
  69. 69.
    Del Vescovo V, Cantaloni C, Cucino A et al (2011) miR-205 Expression levels in nonsmall cell lung cancer do not always distinguish adenocarcinomas from squamous cell carcinomas. Am J Surg Pathol 35:268–275PubMedGoogle Scholar
  70. 70.
    Navarro A, Gaya A, Martinez A et al (2008) MicroRNA expression profiling in classic Hodgkin lymphoma. Blood 111:2825–2832PubMedGoogle Scholar
  71. 71.
    Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688PubMedGoogle Scholar
  72. 72.
    Tavazoie SF, Alarcon C, Oskarsson T et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152PubMedGoogle Scholar
  73. 73.
    Eitan R, Kushnir M, Lithwick-Yanai G et al (2009) Tumor microRNA expression patterns associated with resistance to platinum based chemotherapy and survival in ovarian cancer patients. Gynecol Oncol 114:253–259PubMedGoogle Scholar
  74. 74.
    Furer V, Greenberg JD, Attur M et al (2010) The role of microRNA in rheumatoid arthritis and other autoimmune diseases. Clin Immunol 136:1–15PubMedGoogle Scholar
  75. 75.
    Stanczyk J, Ospelt C, Karouzakis E et al (2011) Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum 63:373–381PubMedGoogle Scholar
  76. 76.
    De Smaele E, Ferretti E, Gulino A (2010) MicroRNAs as biomarkers for CNS cancer and other disorders. Brain Res 1338:100–111PubMedGoogle Scholar
  77. 77.
    De Pietri Tonelli D, Pulvers JN, Haffner C et al (2008) miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135:3911–3921PubMedGoogle Scholar
  78. 78.
    Mukai J, Dhilla A, Drew LJ et al (2008) Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci 11:1302–1310PubMedGoogle Scholar
  79. 79.
    Tufekci KU, Genc S, Genc K (2011) The endotoxin-induced neuroinflammation model of Parkinson’s disease. Parkinsons Dis 2011:487450PubMedGoogle Scholar
  80. 80.
    Jeyaseelan K, Lim KY, Armugam A (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39: 959–966PubMedGoogle Scholar
  81. 81.
    Liu DZ, Tian Y, Ander BP et al (2010) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30:92–101PubMedGoogle Scholar
  82. 82.
    Ouyang YB, Lu Y, Yue S et al (2012) miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol Dis 45:555–563PubMedGoogle Scholar
  83. 83.
    Zeng L, Liu J, Wang Y et al (2011) MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci (Elite Ed) 3:1265–1272Google Scholar
  84. 84.
    Forero DA, van der Ven K, Callaerts P et al (2010) miRNA genes and the brain: implications for psychiatric disorders. Hum Mutat 31:1195–1204PubMedGoogle Scholar
  85. 85.
    Chen H, Wang N, Burmeister M et al (2009) MicroRNA expression changes in lymphoblastoid cell lines in response to lithium treatment. Int J Neuropsychopharmacol 12: 975–981PubMedGoogle Scholar
  86. 86.
    Dorn GW II (2011) MicroRNAs in cardiac disease. Transl Res 157:226–235PubMedGoogle Scholar
  87. 87.
    van Rooij E, Sutherland LB, Liu N et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 103:18255–18260PubMedGoogle Scholar
  88. 88.
    Hullinger TG, Montgomery RL, Seto AG et al (2012) Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110:71–81PubMedGoogle Scholar
  89. 89.
    Lawrie CH, Gal S, Dunlop HM et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675PubMedGoogle Scholar
  90. 90.
    Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006PubMedGoogle Scholar
  91. 91.
    Yuan A, Farber EL, Rapoport AL et al (2009) Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One 4:e4722PubMedGoogle Scholar
  92. 92.
    Kosaka N, Iguchi H, Yoshioka Y et al (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452PubMedGoogle Scholar
  93. 93.
    Zernecke A, Bidzhekov K, Noels H et al (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2:ra81PubMedGoogle Scholar
  94. 94.
    Vickers KC, Palmisano BT, Shoucri BM et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433PubMedGoogle Scholar
  95. 95.
    Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108:5003–5008PubMedGoogle Scholar
  96. 96.
    Hunter MP, Ismail N, Zhang X et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 3:e3694PubMedGoogle Scholar
  97. 97.
    Hu Z, Chen X, Zhao Y et al (2010) Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 28:1721–1726PubMedGoogle Scholar
  98. 98.
    Rabinowits G, Gercel-Taylor C, Day JM et al (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10:42–46PubMedGoogle Scholar
  99. 99.
    Asaga S, Kuo C, Nguyen T et al (2011) Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem 57:84–91PubMedGoogle Scholar
  100. 100.
    Heneghan HM, Miller N, Lowery AJ et al (2010) Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 251:499–505PubMedGoogle Scholar
  101. 101.
    Roth C, Rack B, Muller V et al (2010) Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res 12:R90PubMedGoogle Scholar
  102. 102.
    Zhu W, Qin W, Atasoy U et al (2009) Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes 2:89PubMedGoogle Scholar
  103. 103.
    Heneghan HM, Miller N, Kelly R et al (2010) Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist 15: 673–682PubMedGoogle Scholar
  104. 104.
    Resnick KE, Alder H, Hagan JP et al (2009) The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol 112:55–59PubMedGoogle Scholar
  105. 105.
    Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21PubMedGoogle Scholar
  106. 106.
    Nugent M, Miller N, Kerin MJ (2011) MicroRNAs in colorectal cancer: function, dysregulation and potential as novel biomarkers. Eur J Surg Oncol 37:649–654PubMedGoogle Scholar
  107. 107.
    Fichtlscherer S, De Rosa S, Fox H et al (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107: 677–684PubMedGoogle Scholar
  108. 108.
    Makino K, Jinnin M, Kajihara I et al (2012) Circulating miR-142-3p levels in patients with systemic sclerosis. Clin Exp Dermatol 37:34–39PubMedGoogle Scholar
  109. 109.
    Wang G, Tam LS, Li EK et al (2011) Serum and urinary free microRNA level in patients with systemic lupus erythematosus. Lupus 20:493–500PubMedGoogle Scholar
  110. 110.
    Etheridge A, Lee I, Hood L et al (2011) Extracellular microRNA: a new source of biomarkers. Mutat Res 717:85–90PubMedGoogle Scholar
  111. 111.
    Lusi EA, Passamano M, Guarascio P et al (2009) Innovative electrochemical approach for an early detection of microRNAs. Anal Chem 81:2819–2822PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kemal Uğur Tüfekci
    • 1
  • Meryem Gülfem Öner
    • 1
  • Ralph Leo Johan Meuwissen
    • 2
  • Şermin Genç
    • 1
  1. 1.Department of Neuroscience, Institute of Health ScienceUniversity of Dokuz EylulIzmirTurkey
  2. 2.Department of Internal Medicine, School of MedicineUniversity of Dokuz EylulIzmirTurkey

Personalised recommendations