Use of MicroRNAs in Personalized Medicine

  • Çiğir Biray Avci
  • Yusuf Baran
Part of the Methods in Molecular Biology book series (MIMB, volume 1107)


Personalized medicine comprises the genetic information together with the phenotypic and environmental factors to yield healthcare tailored to an individual and removes the limitations of the “one-size-fits-all” therapy approach. This provides the opportunity to translate therapies from bench to clinic, to diagnose and predict disease, and to improve patient-tailored treatments based on the unique signatures of a patient’s disease and further to identify novel treatment schedules.

Nowadays, tiny noncoding RNAs, called microRNAs, have captured the spotlight in molecular biology with highlights like their involvement in DNA translational control, their impression on mRNA and protein expression levels, and their ability to reprogram molecular signaling pathways in cancer. Realizing their pivotal roles in drug resistance, they emerged as diagnostic targets orchestrating drug response in individualized therapy examples.

It is not premature to think that researchers could have the US Food and Drug Administration (FDA)-approved kit-based assays for miRNA analysis in the near future. We think that miRNAs are ready for prime time.


miRNAs Personalized medicine Pharmacogenomics 


  1. 1.
    The Case for Personalized Medicine, 3rd Edition (2011) Personalized medicine coalition.
  2. 2.
    Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874PubMedGoogle Scholar
  3. 3.
    Sherman S, Pletcher BA, Driscoll DA (2005) Fragile X syndrome: diagnostic and carrier testing. Genet Med 7:584–587PubMedGoogle Scholar
  4. 4.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672PubMedGoogle Scholar
  5. 5.
    Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684PubMedGoogle Scholar
  6. 6.
    Shuldiner AR, O’Connell JR, Bliden KP et al (2009) Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 302:849–857PubMedGoogle Scholar
  7. 7.
    Rukov JL, Wilentzik R, Jaffe I, et al (2013) Pharmaco-miR: linking microRNAs and drug effects. Brief Bioinform Jan 31. [Epub ahead of print]Google Scholar
  8. 8.
    Foekens JA, Sieuwerts AM, Smid M et al (2008) Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci USA 105:13021–13026PubMedGoogle Scholar
  9. 9.
    Rodriguez-Gonzalez FG, Sieuwerts AM, Smid M et al (2011) MicroRNA-30c expression level is an independent predictor of clinical benefit of endocrine therapy in advanced estrogen receptor positive breast cancer. Breast Cancer Res Treat 127:43–51PubMedGoogle Scholar
  10. 10.
    Buffa FM, Camps C, Winchester L et al (2011) microRNA associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res 71(17):5635–5645PubMedGoogle Scholar
  11. 11.
    Radojicic J, Zaravinos A, Vrekoussis T, Kafousi M, Spandidos DA, Stathopoulos EN (2011) MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle 10:507–517PubMedGoogle Scholar
  12. 12.
    Gong C, Yao Y, Wang Y et al (2011) Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem 286:19127–19137PubMedGoogle Scholar
  13. 13.
    Qian B, Katsaros D, Lu L et al (2009) High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-β1. Breast Cancer Res Treat 117:131–140PubMedGoogle Scholar
  14. 14.
    Yan LX, Huang XF, Shao Q et al (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14:2348–2360PubMedGoogle Scholar
  15. 15.
    Sempere LF, Christensen M, Silahtaroglu A et al (2007) Altered microRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 67:11612–11620PubMedGoogle Scholar
  16. 16.
    Rothe F, Ignatiadis M, Chaboteaux C et al (2011) Global MicroRNA expression profiling identifies miR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS One 6:e20980PubMedGoogle Scholar
  17. 17.
    Camps C, Buffa FM, Colella S et al (2008) hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14:1340–1348PubMedGoogle Scholar
  18. 18.
    Schepeler T, Reinert JT, Ostenfeld MS et al (2008) Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res 68:6416–6424PubMedGoogle Scholar
  19. 19.
    Lanza G, Ferracin M, Gafa R et al (2007) mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer 6:54PubMedGoogle Scholar
  20. 20.
    Drebber U, Lay M, Wedemeyer I et al (2011) Altered levels of the onco-microRNA 21 and the tumor suppressor microRNAs 143 and 145 in advanced rectal cancer indicate successful neoadjuvant chemoradiotherapy. Int J Oncol 39:409–415PubMedGoogle Scholar
  21. 21.
    Nielsen BS, Jorgensen S, Fog JU et al (2011) High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis 28:27–38PubMedGoogle Scholar
  22. 22.
    Kulda V, Pesta M, Topolcan O et al (2010) Relevance of miR-21 and miR-143 expression in tissue samples of colorectal carcinoma and its liver metastases. Cancer Genet Cytogenet 200:154–160PubMedGoogle Scholar
  23. 23.
    Shibuya H, Iinuma H, Shimada R, Horiuchi A, Watanabe T (2010) Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer. Oncology 79:313–320PubMedGoogle Scholar
  24. 24.
    Schetter AJ, Leung SY, Sohn JJ et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436PubMedGoogle Scholar
  25. 25.
    Landi MT, Zhao Y, Rotunno M et al (2010) MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res 16:430–441PubMedGoogle Scholar
  26. 26.
    Yu SL, Chen HY, Chang GC et al (2008) MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13:48–57PubMedGoogle Scholar
  27. 27.
    Raponi M, Dossey L, Jatkoe T et al (2009) MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res 69:5776–5783PubMedGoogle Scholar
  28. 28.
    Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756PubMedGoogle Scholar
  29. 29.
    Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198PubMedGoogle Scholar
  30. 30.
    Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V, Lianidou ES (2008) Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 54:1696–1704PubMedGoogle Scholar
  31. 31.
    Gao W, Shen H, Liu L, Xu J, Xu J, Shu Y (2011) miR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J. Cancer Res. Clin Oncol 137:557–566Google Scholar
  32. 32.
    Gallardo E, Navarro A, Vinolas N et al (2009) miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis 30:1903–1909PubMedGoogle Scholar
  33. 33.
    Lebanony D, Benjamin H, Gilad S et al (2009) Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J Clin Oncol 27:2030–2037PubMedGoogle Scholar
  34. 34.
    Fassina A, Cappellesso R, Fassan M (2011) Classification of non-small cell lung carcinoma in transthoracic needle specimens using microRNA expression profiling. Chest 140:1305–1311. doi: 10.1378/chest.11-0708 PubMedGoogle Scholar
  35. 35.
    Bishop JA, Benjamin H, Cholakh H, Chajut A, Clark DP, Westra WH (2010) Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach. Clin Cancer Res 16:610–619PubMedGoogle Scholar
  36. 36.
    Calin GA, Croce CM (2006) microRNA signatures in human cancers. Nature 6(11):857–866Google Scholar
  37. 37.
    Zheng T, Wang J, Chen X, Liu L (2009) Role of microRNA in anticancer drug resistance. Int J Cancer 126(1):2–10Google Scholar
  38. 38.
    van Jaarsveld MT, Helleman J, Berns EM, Wiemer EA (2010) MicroRNAs in ovarian cancer biology and therapy resistance. Int J Biochem Cell Biol 42(8):1282–1290PubMedGoogle Scholar
  39. 39.
    Mishra PJ, Bertino JR (2009) microRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics 10(3):399–416PubMedGoogle Scholar
  40. 40.
    Fojo T (2007) Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist Updat 10(1–2):59–67PubMedGoogle Scholar
  41. 41.
    Tsang WP, Kwok TT (2008) Let-7a microRNA suppresses therapeutics induced cancer cell death by targeting caspase-3. Apoptosis 13(10): 1215–1222PubMedGoogle Scholar
  42. 42.
    Pothof J, Verkaik NS, van IJcken W et al (2009) MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. EMBO J 28(14):2090–2099PubMedGoogle Scholar
  43. 43.
    Nasser MW, Datta J, Nuovo G et al (2008) Down-regulation of microRNA-1 (mir-1) in lung cancer: suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by mir-1. J Biol Chem 283(48):33394–33405PubMedGoogle Scholar
  44. 44.
    Wang F, Sun GP, Zou YF, Hao JQ et al (2012) MicroRNAs as promising biomarkers for gastric cancer. Cancer Biomark 11:259–267PubMedGoogle Scholar
  45. 45.
    Li Z, Hu S, Wang J et al (2010) MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in ovarian cancer cells. Gynecol Oncol 119(1):125–130PubMedGoogle Scholar
  46. 46.
    Zhu H, Wu H, Liu X et al (2008) Role of MicroRNA miR-27a and miR- 451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol 76(5):582–588PubMedGoogle Scholar
  47. 47.
    Meng F, Henson R, Lang M et al (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130(7):2113–2129PubMedGoogle Scholar
  48. 48.
    Giovannetti E, Funel N, Peters GJ et al (2010) microRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res 70(11):4528–4538PubMedGoogle Scholar
  49. 49.
    Li J, Huang H, Sun L et al (2009) MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res 15(12):3998–4008PubMedGoogle Scholar
  50. 50.
    Si ML, Zhu S, Wu H et al (2007) miR-21-mediated tumor growth. Oncogene 26(9):2799–2803PubMedGoogle Scholar
  51. 51.
    Corsten MF, Miranda R, Kasmieh R et al (2007) microRNA-21 knockdown disrupts glioma in vivo and displays synergistic cytotoxicity with neural precursor cell-delivered S-TRAIL in human gliomas. Cancer Res 67(19):8994–9000PubMedGoogle Scholar
  52. 52.
    Shi L, Chen C, Yang J et al (2010) MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res 1352:255–264PubMedGoogle Scholar
  53. 53.
    Gu J, Zhu X, Li Y et al (2011) miRNA-21 regulates arsenic-induced anti-leukemia activity in myelogenous cell lines. Med Oncol 28(1):211–218PubMedGoogle Scholar
  54. 54.
    Li Y, Zhu X, Gu J et al (2010) Anti-miR-21 oligonucleotide enhances chemosensitivity of leukemic HL60 cells to arabinosylcytosine by inducing apoptosis. Hematology 15(4):215–221PubMedGoogle Scholar
  55. 55.
    Ryan BM, Robles AI, Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10(6):389–402PubMedGoogle Scholar
  56. 56.
    Duan R, Pak C, Jin P (2007) Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet 16(9):1124–1131PubMedGoogle Scholar
  57. 57.
    Passetti F, Ferreira CG, Costa FF (2009) The impact of microRNAs and alternative splicing in pharmacogenomics. Pharmacogenomics J 9(1):1–13PubMedGoogle Scholar
  58. 58.
    Tchatchou S, Jung A, Hemminki K et al (2009) A variant affecting a putative miRNA target site in estrogen receptor (ESR) 1 is associated with breast cancer risk in premenopausal women. Carcinogenesis 30(1):59–64PubMedGoogle Scholar
  59. 59.
    To KK, Zhan Z, Litman T, Bates SE (2008) Regulation of ABCG2 expression at the 3’ untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol Cell Biol 28(17):5147–5161PubMedGoogle Scholar
  60. 60.
    Boni V, Zarate R, Villa JC et al (2011) Role of primary miRNA polymorphic variants in metastatic colon cancer patients treated with 5-fluorouracil and irinotecan. Pharmacogenomics J 11:429–436PubMedGoogle Scholar
  61. 61.
    Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111PubMedGoogle Scholar
  62. 62.
    Bommer GT, Gerin I, Feng Y et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307PubMedGoogle Scholar
  63. 63.
    Xia HF, He TZ, Liu CM et al (2009) MiR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting Bmf. Cell Physiol Biochem 23(4–6):347–358PubMedGoogle Scholar
  64. 64.
    Du L, Pertsemlidis A (2010) MicroRNAs and lung cancer: tumors and 22-mers. Cancer Metastasis Rev 29:109–122PubMedGoogle Scholar
  65. 65.
    Song B, Wang Y, Xi Y et al (2009) Mechanism of chemoresistance mediated by mir-140 in human osteosarcoma and colon cancer cells. Oncogene 28(46):4065–4074PubMedGoogle Scholar
  66. 66.
    Zou GM (2008) Cancer initiating cells or cancer stem cells in the gastrointestinal tract and liver. J Cell Physiol 217(3):598–604PubMedGoogle Scholar
  67. 67.
    Jin L, Hope KJ, Zhai Q et al (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12(10):1167–1174PubMedGoogle Scholar
  68. 68.
    Riccioni R, Dupuis ML, Bernabei M et al (2010) The cancer stem cell selective inhibitor salinomycin is a p-glycoprotein inhibitor. Blood Cells Mol Dis 45(1):86–92PubMedGoogle Scholar
  69. 69.
    Wang Z, Li Y, Ahmad A et al (2010) Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance. Drug Resist Updat 13(4–5):109–118PubMedGoogle Scholar
  70. 70.
    Aboody KS, Najbauer J, Danks MK (2008) Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther 15(10):739–752PubMedGoogle Scholar
  71. 71.
    Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137:1032–1046PubMedGoogle Scholar
  72. 72.
    Lanford RE, Hildebrandt-Eriksen ES, Petri A et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201PubMedGoogle Scholar
  73. 73.
    Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with antagomirs. Nature 438:685–689PubMedGoogle Scholar
  74. 74.
    Krutzfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, Manoharan M, Stoffel M (2007) Specificity, duplex degradation and subcellular localization of anatagomirs. Nucleic Acids Res 35:2885–2892PubMedGoogle Scholar
  75. 75.
    Fabani MM, Gait MJ (2008) miR-122 targeting with LNA/20-O-methyl oligonucleotide mixers, peptide nucleotides (PNA) and PNA-peptide conjugates. RNA 14:336–346PubMedGoogle Scholar
  76. 76.
    Fabani MM, Abreu-Goodger C, Williams D, Lyons PA, Torres AG, Smith KGC, Enright AJ, Gait MJ, Vigorito E (2010) Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Res 38:4466–4475PubMedGoogle Scholar
  77. 77.
    Koshkin AA, Rajwanshi VK, Wengel J (1998) Novel convenient synthesys of LNA [2.2.1] bicycle nucleotides. Tetrahedron Lett 39:4381–4384Google Scholar
  78. 78.
    Orom UA, Kaupinnen S, Lund AH (2006) LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372:137–141PubMedGoogle Scholar
  79. 79.
    Thomas JR, Hergenrother PJ (2008) Targeting RNA with small molecules. Chem Rev 108:1171–1224PubMedGoogle Scholar
  80. 80.
    Gumireddy K, Young DD, Xiong X, Hogenesch JB, Huang Q, Deiters A (2008) Small-molecule inhibitors of microRNA miR-21 function. Angew Chem Int Ed 47:7482–7484Google Scholar
  81. 81.
    Zhang S, Chen L, Jung EJ, Calin GA (2010) Targeting microRNAs with small molecules: from dream to reality. Clin Pharmacol Ther 87:754–758PubMedGoogle Scholar
  82. 82.
    Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16:2043–2050PubMedGoogle Scholar
  83. 83.
    Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson E, Bell GW, Teruya-Feldstein J, Weinberg RA (2010) Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28:341–347PubMedGoogle Scholar
  84. 84.
    Chen Y, Zhu X, Zhang X, Liu B, Huang L (2010) Nanoparticles modified with tumor targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 18:1650–1656PubMedGoogle Scholar
  85. 85.
    Shi SJ, Zhong ZR, Liu J, Zhang ZR, Sun X, Gong T (2011) Solid lipid nanoparticles loaded with anti-microRNA oligonuleotides (AMOs) for suppression of microRNA-21 functions in human lung cancer cells. Pharm Res 29:97–109PubMedGoogle Scholar
  86. 86.
    Liu XQ, Song WJ, Sun TM, Zhang PZ, Wang J (2010) Targeted delivery of antisense inhibitor of miRNA for antiangiogenesis therapy using Crgd functionalized nanoparticles. Mol Pharm 8:250–259PubMedGoogle Scholar
  87. 87.
    Bader AG, Brown D, Winkler M (2010) The promise of microRNA replacement therapy. Cancer Res 70:7027–7030PubMedGoogle Scholar
  88. 88.
    Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N, Kawamata M, Kelnar K, Bader AG, Brown D, Ochiya T (2010) Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 18:181–187PubMedGoogle Scholar
  89. 89.
    Wu Z, Asokan A, Samulski RJ (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 14:316–327PubMedGoogle Scholar
  90. 90.
    Kota J, Chivukula RR, O’Donnell KA (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017PubMedGoogle Scholar
  91. 91.
    Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261PubMedGoogle Scholar
  92. 92.
    Lin PY, Yu SL, Yang PC (2010) MicroRNA in lung cancer. Br J Cancer 103:1144–1148PubMedGoogle Scholar
  93. 93.
    Yendamuri S, Kratzke R (2011) MicroRNA biomarkers in lung cancer: MiRacle or quagMiRe? Transl Res 157:209–215PubMedGoogle Scholar
  94. 94.
    Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070PubMedGoogle Scholar
  95. 95.
    Andorfer CA, Necela BM, Thompson EA, Perez EA (2011) MicroRNA signatures: clinical biomarkers for the diagnosis and treatment of breast cancer. Trends Mol Med 17:313–319PubMedGoogle Scholar
  96. 96.
    Le QJ, Caldas C (2010) Micro-RNAs and breast cancer. Mol Oncol 4:230–241Google Scholar
  97. 97.
    Fu SW, Chen L, Man YG (2011) miRNA biomarkers in breast cancer detection and management. J Cancer 2:116–122PubMedGoogle Scholar
  98. 98.
    Luo X, Burwinkel B, Tao S, Brenner H (2011) MicroRNA signatures: novel biomarker for colorectal cancer? Cancer Epidemiol Biomarkers Prev 20:1272–1286PubMedGoogle Scholar
  99. 99.
    Ma Y, Zhang P, Yang J, Liu Z, Yang Z, Qin H (2012) Candidate microRNA biomarkers in human colorectal cancer: systematic review profiling studies and experimental validation. Int J Cancer 130:2077–2087. doi: 10.1002/ijc.26232 PubMedGoogle Scholar
  100. 100.
    Solmi R, Lauriola M, Francesconi M et al (2008) Displayed correlation between gene expression profiles and submicroscopic alterations in response to cetuximab, gefitinib and EGF in human colon cancer cell lines. BMC Cancer 8:227PubMedGoogle Scholar
  101. 101.
    Ragusa M, Majorana A, Statello L et al (2010) Specific alterations of microRNA transcriptome and global network structure in colorectal carcinoma after cetuximab treatment. Mol Cancer Ther 9:3396–3409PubMedGoogle Scholar
  102. 102.
    Zhang W, Winder T, Ning Y et al (2011) A let-7 microRNA-binding site polymorphism in 3′-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy. Ann Oncol 22:104–109PubMedGoogle Scholar
  103. 103.
    Graziano F, Canestrari E, Loupakis F et al (2010) Genetic modulation of the let-7 microRNA binding to KRAS 3′-untranslated region and survival of metastatic colorectal cancer patients treated with salvage cetuximab–irinotecan. Pharmacogenomics J 10:458–464PubMedGoogle Scholar
  104. 104.
    Read ML, Spice R, Parker AL, Mir S, Logan A (2005) 12th annual congress of the European society of gene therapy. Expert Opin Biol Ther 5:137–141PubMedGoogle Scholar
  105. 105.
    Weiss GJ, Bemis LT, Nakajima E et al (2008) EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann Oncol 19:1053–1059PubMedGoogle Scholar
  106. 106.
    Rai K, Takigawa N, Ito S et al (2011) Liposomal delivery of microRNA-7-expressing plasmid overcomes epidermal growth factor receptor-tyrosine kinase inhibitor-resistance in lung cancer cells. Mol Cancer Ther 10(9):1720–1727PubMedGoogle Scholar
  107. 107.
    Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ (2009) Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem 284:5731–5741PubMedGoogle Scholar
  108. 108.
    Ferracin M, Pedriali M, Veronese A et al (2011) MicroRNA profiling for the identification of cancers with unknown primary tissue-of-origin. J Pathol 225(1):43–45PubMedGoogle Scholar
  109. 109.
    Varadhachary GR, Spector Y, Abbruzzese JL et al (2011) Prospective gene signature study using microRNA to identify the tissue of origin in patients with carcinoma of unknown primary. Clin Cancer Res 17:4063–4070PubMedGoogle Scholar
  110. 110.
    Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437PubMedGoogle Scholar
  111. 111.
    Mostert B, Sieuwerts AM, Martens JW, Sleijfer S (2011) Diagnostic applications of cell-free and circulating tumor cell-associated miRNAs in cancer patients. Expert Rev Mol Diagn 11:259–275PubMedGoogle Scholar
  112. 112.
    Brase JC, Wuttig D, Kuner R, Sultmann H (2010) Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer 9:306PubMedGoogle Scholar
  113. 113.
    Scholer N, Langer C, Dohner H, Buske C, Kuchenbauer F (2010) Serum microRNAs as a novel class of biomarkers: a comprehensive review of the literature. Exp Hematol 38: 1126–1130PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Çiğir Biray Avci
    • 1
  • Yusuf Baran
    • 2
  1. 1.Faculty of Medicine, Department of Medical BiologyEge UniversityIzmirTurkey
  2. 2.Molecular Biology and GeneticsIzmir Institute of TechnologyIzmirTurkey

Personalised recommendations