Process Analytical Technology (PAT) in Insect and Mammalian Cell Culture Processes: Dielectric Spectroscopy and Focused Beam Reflectance Measurement (FBRM)

  • Damir Druzinec
  • Katja Weiss
  • Christiane Elseberg
  • Denise Salzig
  • Matthias Kraume
  • Ralf Pörtner
  • Peter Czermak
Part of the Methods in Molecular Biology book series (MIMB, volume 1104)


Modern bioprocesses demand for a careful definition of the critical process parameters (CPPs) already during the early stages of process development in order to ensure high-quality products and satisfactory yields. In this context, online monitoring tools can be applied to recognize unfavorable changes of CPPs during the production processes and to allow for early interventions in order to prevent losses of production batches due to quality issues. Process analytical technologies such as the dielectric spectroscopy or focused beam reflectance measurement (FBRM) are possible online monitoring tools, which can be applied to monitor cell growth as well as morphological changes. Since the dielectric spectroscopy only captures cells with intact cell membranes, even information about dead cells with ruptured or leaking cell membranes can be derived. The following chapter describes the application of dielectric spectroscopy on various virus-infected and non-infected cell lines with respect to adherent as well as suspension cultures in common stirred tank reactors. The adherent mammalian cell lines Vero (African green monkey kidney cells) and hMSC-TERT (telomerase-immortalized human mesenchymal stem cells) are thereby cultured on microcarrier, which provide the required growth surface and allow the cultivation of these cells even in dynamic culture systems. In turn, the insect-derived cell lines S2 and Sf21 are used as examples for cells typically cultured in suspension. Moreover, the FBRM technology as a further monitoring tool for cell culture applications has been included in this chapter using the example of Drosophila S2 insect cells.

Key words

Online monitoring Dielectric spectroscopy FBRM Microcarrier S2 Sf21 Vero hMSC-TERT Process analytical technology Adherent cultures Stirred tank reactor Measles virus Baculovirus 



The researchers would like to thank the Hessen State Ministry of Higher Education, Research and Arts for the financial support within the Hessen initiative for scientific and economic excellence (LOEWE). The researchers further would like to thank the Federal Ministry of Economics and Technology of Germany (KF2268901UL9) for financial support. The authors are indebted to Roberto Cattaneo for providing MVvac2-GFP(P).


  1. 1.
    Sommerfeld S, Strube J (2005) Challenges in biotechnology production—generic processes and process optimization for monoclonal antibodies. Chem Eng Process 44:1123–1137CrossRefGoogle Scholar
  2. 2.
    Teixeira AP, Oliveira R, Alves PM et al (2009) Advances in on-line monitoring and control of mammalian cell cultures: supporting the PAT initiative. Biotechnol Adv 27:726–732CrossRefGoogle Scholar
  3. 3.
    Czermak P, Pörtner R, Brix A (2009) Special engineering aspects. In: Eibl R, Eibl D, Pörtner R et al (eds) Cell and tissue reaction engineering. Springer, Heidelberg, pp 83–172CrossRefGoogle Scholar
  4. 4.
    Landgrebe D, Haake C, Hoepfner T et al (2010) On-line infrared spectroscopy for bioprocess monitoring. Appl Microbiol Biotechnol 88:11–22CrossRefGoogle Scholar
  5. 5.
    Davey CL, Davey HM, Kell DB et al (1993) Introduction to the dielectric estimation of cellular biomass in real time, with special emphasis on measurements at high volume fractions. Anal Chim Acta 279:155–161CrossRefGoogle Scholar
  6. 6.
    Degouys V, Cerckel I, Garcia A et al (1993) Dielectric spectroscopy of mammalian cells. Cytotechnology 13:195–202CrossRefGoogle Scholar
  7. 7.
    Beutel S, Henkel S (2011) In situ sensor techniques in modern bioprocess monitoring. Appl Microbiol Biotechnol 91:1493–1505CrossRefGoogle Scholar
  8. 8.
    Lindner P, Endres C, Bluma A et al (2010) Disposable Sensor Systems. In: Eibl R, Eibl D (eds) Single-Use Technology in Biopharmaceutical Manufacture. John Wiley & Sons, Inc., pp 67–81Google Scholar
  9. 9.
    Vojinovic V, Cabral JMS, Fonseca LP (2006) Real-time bioprocess monitoring. Part I: in situ sensors. Sensor Actuator B Chem 114: 1083–1091CrossRefGoogle Scholar
  10. 10.
    Pethig R (1984) Dielectric properties of biological materials: biophysical and medical applications. IEEE Trans Electr Insul 19:453–474CrossRefGoogle Scholar
  11. 11.
    Markx GH, Davey CL (1999) The dielectric properties of biological cells at radiofrequencies: applications in biotechnology. Enzym Microb Tech 25:161–171CrossRefGoogle Scholar
  12. 12.
    Negrete A, Esteban G, Kotin RM (2007) Process optimization of large-scale production of recombinant adeno-associated vectors using dielectric spectroscopy. Appl Microbiol Biotechnol 76:761–772CrossRefGoogle Scholar
  13. 13.
    Ansorge S, Esteban G, Schmid G (2007) On-line monitoring of infected Sf-9 insect cell cultures by scanning permittivity measurements and comparison with off-line biovolume measurements. Cytotechnology 55:115–124CrossRefGoogle Scholar
  14. 14.
    Davey CL, Markx GH, Kell DB (1993) On the dielectric method of monitoring cellular viability. Pure Appl Chem 65:1921–1926CrossRefGoogle Scholar
  15. 15.
    Stoicheva NG, Davey CL, Markx GH et al (1989) Dielectric spectroscopy: a rapid method for the determination of solvent biocompatibility during biotransformations. Biocat Biotrans 2:245–255CrossRefGoogle Scholar
  16. 16.
    Justice C, Brix A, Freimark D et al (2011) Process control in cell culture technology using dielectric spectroscopy. Biotechnol Adv 29: 391–401CrossRefGoogle Scholar
  17. 17.
    Druzinec D, Salzig D, Brix A (2013) Optimization of Insect Cell Based Protein Production Processes – Online Monitoring, Expression Systems, Scale Up. In: Advances in Biochemical Engineering/Biotechnology. Springer Berlin Heidelberg, pp 1–36Google Scholar
  18. 18.
    Sparks RG, Dobbs CL (1993) The use of laser backscatter instrumentation for the online measurement of the particle-size distribution of emulsions. Part Part Syst Char 10:279–289CrossRefGoogle Scholar
  19. 19.
    Tadayyon A, Rohani S (1998) Determination of particle size distribution by Par-Tec (R) 100: modeling and experimental results. Part Part Syst Char 15:127–135CrossRefGoogle Scholar
  20. 20.
    Dyring C (2012) Optimising the Drosophila S2 expression system for production of therapeutic vaccines. Bioprocess J 10:28–35Google Scholar
  21. 21.
    Weber W, Fussenegger M (2009) Insect cell-based recombinant protein production. In: Eibl R, Eibl D, Pörtner R et al (eds) Cell and tissue reaction engineering. Springer, Heidelberg, pp 263–277CrossRefGoogle Scholar
  22. 22.
    Clements DE, Coller B-A, Lieberman MM et al (2010) Development of a recombinant tetravalent dengue virus vaccine: immunogenicity and efficacy studies in mice and monkeys. Vaccine 28:2705–2715CrossRefGoogle Scholar
  23. 23.
    Zhang F, Ma W, Zhang L et al (2007) Expression of particulate-form of Japanese encephalitis virus envelope protein in stably transfected Drosophila cell line. Virol J 4:17–24CrossRefGoogle Scholar
  24. 24.
    Ivey-Hoyle M (1991) Recombinant gene expression in cultured Drosophila melanogaster cells. Curr Opin Biotechnol 2:704–707CrossRefGoogle Scholar
  25. 25.
    Moraes AM, Jorge SAC, Astray RM et al (2012) Drosophila melanogaster S2 cells for expression of heterologous genes: from gene cloning to bioprocess development. Biotechnol Adv 30:613–628CrossRefGoogle Scholar
  26. 26.
    Frazatti-Gallina NM, Mourao-Fuches RM, Paoli RL et al (2004) Vero-cell rabies vaccine produced using serum-free medium. Vaccine 23: 511–517CrossRefGoogle Scholar
  27. 27.
    Rourou S, van der Ark A, van der Velden T, Kallel H (2007) A microcarrier cell culture process for propagating rabies virus in Vero cells grown in a stirred bioreactor under fully animal component free conditions. Vaccine 25:3879–3889CrossRefGoogle Scholar
  28. 28.
    Rourou S, van der Ark A, Majoul S et al (2009) A novel animal-component-free medium for rabies virus production in Vero cells grown on Cytodex 1 microcarriers in a stirred bioreactor. Appl Microbiol Biotechnol 85:53–63CrossRefGoogle Scholar
  29. 29.
    Chen A, Poh SL, Dietzsch C et al (2011) Serum-free microcarrier based production of replication deficient influenza vaccine candidate virus lacking NS1 using Vero cells. BMC Biotechnol 11:81CrossRefGoogle Scholar
  30. 30.
    Kurokawa M, Sato S (2011) Growth and poliovirus production of Vero cells on a novel microcarrier with artificial cell adhesive protein under serum-free conditions. J Biosci Bioeng 111:600–604CrossRefGoogle Scholar
  31. 31.
    Langfield KK, Walker HJ, Gregory LC et al (2011) Manufacture of measles viruses. Methods Mol Biol 737:345–366Google Scholar
  32. 32.
    Swanson SK, Mento SJ, Weeks-Levy C et al (1988) Characterization of Vero cells. J Biol Stand 16:311–320CrossRefGoogle Scholar
  33. 33.
    Justice C, Leber J, Freimark D et al (2011) Online- and offline-monitoring of stem cell expansion on microcarrier. Cytotechnology 63: 325–335CrossRefGoogle Scholar
  34. 34.
    Lock LT, Tzanakakis ES (2009) Expansion and differentiation of human embryonic stem cells to endoderm progeny. Tissue Eng Part A 15: 2051–2063CrossRefGoogle Scholar
  35. 35.
    Oh SK, Chen AK, Mok Y et al (2009) Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res 2:219–230CrossRefGoogle Scholar
  36. 36.
    Justice C, Leber J, Salzig D et al (2012) Microcarrier based expansion process of hMSCs in highly vital and non-differentiated quality. Int J Artif Organs 35:39–107Google Scholar
  37. 37.
    Weber C, Pohl S, Pörtner R et al (2007) Cultivation and differentiation of encapsulated hMSC-TERT in a disposable small-scale syringe-like fixed bed reactor. Open Biomed Eng J 1:64–70Google Scholar
  38. 38.
    Weber C, Freimark D, Pörtner R et al (2010) Expansion of human mesenchymal stem cells in a fixed-bed bioreactor system based on non-porous glass carrier—part A: inoculation, cultivation, and cell harvest procedures. Int J Artif Organs 33:512–525Google Scholar
  39. 39.
    Weber C, Freimark D, Pörtner R et al (2010) Expansion of human mesenchymal stem cells in a fixed-bed bioreactor system based on non-porous glass carrier—part B: modeling and scale-up of the system. Int J Artif Organs 33: 782–795Google Scholar
  40. 40.
    Weber C, Pohl S, Pörtner R et al (2010) Production process for stem cell based therapeutic implants: expansion of the production cell line and cultivation of encapsulated cells. Adv Biochem Eng Biotechnol 123:143–162Google Scholar
  41. 41.
    Simonsen JL, Rosada C, Serakinci N et al (2002) Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 20:592–596CrossRefGoogle Scholar
  42. 42.
    Weber C, Pohl S, Pörtner R et al (2007) Expansion and harvesting of hMSC-TERT. Open Biomed Eng J 1:38–46Google Scholar
  43. 43.
    Heile AMB, Wallrapp C, Klinge PM et al (2009) Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury. Neurosci Lett 463:176–181CrossRefGoogle Scholar
  44. 44.
    El Wajgalia A, Estebanc G et al (2012) Impact of microcarrier coverage on using permittivity for on-line monitoring high adherent Vero cell densities in perfusion bioreactors. Biochem Eng J 70:173–179CrossRefGoogle Scholar
  45. 45.
    Levine DW, Wang DIC, Thilly WG (1979) Optimization of growth surface parameters in microcarrier cell culture. Biotechnol Bioeng 21:821–845CrossRefGoogle Scholar
  46. 46.
    Butler M, Spearman M (2007) Cell Counting and Viability Measurements. In: Pörtner R (ed) Animal Cell Biotechnology, Humana Press, Vol. 24, pp 205–222Google Scholar
  47. 47.
    Devaux P, von Messling V, Songsungthong W et al (2007) Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation. Virology 360:72–83CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Damir Druzinec
    • 1
  • Katja Weiss
    • 1
  • Christiane Elseberg
    • 1
  • Denise Salzig
    • 1
  • Matthias Kraume
    • 2
  • Ralf Pörtner
    • 3
  • Peter Czermak
    • 1
    • 4
    • 5
  1. 1.Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGiessenGermany
  2. 2.Department of Chemical EngineeringUniversity of Technology BerlinBerlinGermany
  3. 3.Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
  4. 4.Department of Chemical EngineeringKansas State UniversityManhattanUSA
  5. 5.Faculty of Biology and ChemistryJustus-Liebig-University of GiessenGiessenGermany

Personalised recommendations