1H-NMR Protocol for Exometabolome Analysis of Cultured Mammalian Cells

  • Tiago M. Duarte
  • Nuno Carinhas
  • Ana Carina Silva
  • Paula M. Alves
  • Ana P. Teixeira
Part of the Methods in Molecular Biology book series (MIMB, volume 1104)


1H-Nuclear magnetic resonance (1H-NMR) spectroscopy is a powerful technique to analyze the composition of complex mixtures based on the particular proton fingerprint of each molecule. Here we describe a protocol for exometabolome analysis of mammalian cells using this technique, including sample preparation, spectra acquisition, and integration. The potential of this technique is exemplified by application to cultures of a Chinese hamster ovary (CHO) cell line. The average error associated to this method is under 3% and the limit of quantification for all metabolites analyzed is below 180 μM.

Key words

1H-NMR spectroscopy Mammalian cell cultures Exometabolome analysis Bioprocess development 



This work was supported by Fundação para a Ciência e a Tecnologia (FCT): projects PTDC/EBB-EBI/102750/2008 and PTDC/EBB-BIO/119501/2010; fellowships SFRH/BD/81553/2011 and SFRH/BPD/80514/2011. FCT is also acknowledged for supporting the National NMR Network (REDE/1517/RMN/2005).


  1. 1.
    Sauer PW, Burky JE, Wesson MC et al (2000) A high-yielding, generic fed-batch cell culture process for production of recombinant antibodies. Biotechnol Bioeng 67(5):585–597CrossRefGoogle Scholar
  2. 2.
    Wurm FM (2004) Production of recombinant protein therapeutic in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398CrossRefGoogle Scholar
  3. 3.
    Gatti MDL, Wlaschin KF, Nissom PM et al (2007) Comparative transcriptional analysis of mouse hybridoma and recombinant Chinese hamster ovary cells undergoing butyrate treatment. J Biosci Bioeng 103(1):82–91CrossRefGoogle Scholar
  4. 4.
    Kim N, Lee G (2001) Overexpression of bcl-2 inhibits sodium butyrate-induced apoptosis in Chinese hamster ovary cells resulting in enhanced humanized antibody production. Biotechnol Bioeng 71(3):184–193CrossRefGoogle Scholar
  5. 5.
    Yee JC, Gerdtzen ZP, Hu W-S (2009) Comparative transcriptome analysis to unveil genes affecting recombinant protein productivity in mammalian cells. Biotechnol Bioeng 102(1): 246–263CrossRefGoogle Scholar
  6. 6.
    Yoon SK, Kim SH, Lee GM (2003) Effect of low culture temperature on specific productivity and transcription level of anti-4-1BB antibody in recombinant Chinese hamster ovary cells. Biotechnol Prog 19(4):1383–1386CrossRefGoogle Scholar
  7. 7.
    Yoon SK, Hwang SO, Lee GM (2004) Enhancing effect of low culture temperature on specific antibody productivity of recombinant Chinese hamster ovary cells: clonal variation. Biotechnol Prog 20(6):1683–1688CrossRefGoogle Scholar
  8. 8.
    Ozturk SS, Palsson BO (1991) Effect of medium osmolarity on hybridoma growth, metabolism and antibody production. Biotechnol Bioeng 37:989–993CrossRefGoogle Scholar
  9. 9.
    Sellick CA, Croxford AS, Maqsood AR et al (2011) Metabolite profiling of recombinant CHO cells: designing tailored feeding regimes that enhance recombinant antibody production. Biotechnol Bioeng 108(12):3025–3031CrossRefGoogle Scholar
  10. 10.
    Khoo SHG, Al-Rubeai M (2009) Metabolic characterization of a hyper-productive state in an antibody producing NSO myeloma cell line. Meth Eng 11:199–211CrossRefGoogle Scholar
  11. 11.
    Dunn WB, Broadhurst DI, Atherton HJ et al (2011) Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev 40:387–426CrossRefGoogle Scholar
  12. 12.
    Bradley SA, Ouyang A, Purdie J et al (2010) Fermentanomics: monitoring mammalian cell cultures with NMR spectroscopy. J Am Chem Soc 132:9531–9533CrossRefGoogle Scholar
  13. 13.
    Wilson DM, Burlingame AL (1974) Deuterium and carbon-13 tracer studies of ethanol metabolism in the rat by 2H, 1H-decoupled 13C nuclear magnetic resonance. Biochem Biophys Res Commun 56(3):828–835CrossRefGoogle Scholar
  14. 14.
    Dauner M, Bailey JE, Sauer U (2001) Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol Bioeng 76(2):144–156CrossRefGoogle Scholar
  15. 15.
    Gout E, Blingny R, Genix P et al (1992) Effect of glyphosate on plant cell metabolism. 31P and 13C NMR studies. Biochimie 74(9–10):875–882CrossRefGoogle Scholar
  16. 16.
    Alves PM, Fonseca LL, Peixoto CC et al (2000) NMR studies on energy metabolism of immobilized primary neurons and astrocytes during hypoxia, ischemia and hypoglycemia. NMR Biomed 13:438–448CrossRefGoogle Scholar
  17. 17.
    Weljie AM, Zang P, Bondareva A et al (2011)1H-NMR metabolomics identification of markers of hypoxia-induced metabolic shifts in a breast cancer model system. J Biomol NMR 49(3–4):185–193CrossRefGoogle Scholar
  18. 18.
    Viant MR, Lyeth BG, Miller MG et al (2005) An NMR metabolomic investigation of early metabolic disturbances following traumatic brain injury in a mammalian model. NMR Biomed 18:507–516CrossRefGoogle Scholar
  19. 19.
    Lindon JC, Nicholson JK, Holmes E et al (2000) Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids. Conc Magn Res 12(5):289–320CrossRefGoogle Scholar
  20. 20.
    Griffin JL, Shockcor JP (2004) Metabolic profiles of cancer cells. Nat Rev 4:451–461Google Scholar
  21. 21.
    Weljie AM, Newton J, Mercier P et al (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78:4430–4442CrossRefGoogle Scholar
  22. 22.
    Wishart DS (2008) Quantitative metabolomics using NMR. Anal Chem 27:228–237Google Scholar
  23. 23.
    Jansen JFA, Backes WH, Nikolay K et al (2006) 1H NMR spectroscopy of the brain: absolute quantification of metabolites. Radiology 240(2):318–332CrossRefGoogle Scholar
  24. 24.
    Duarte IF, Marques J, Ladeirinha AF et al (2009) Analytical approaches toward successful human cell metabolome studies by NMR spectroscopy. Anal Chem 82:5023–5032CrossRefGoogle Scholar
  25. 25.
    Aranibar N, Borys M, Mackin NA et al (2011) NMR-based metabolomics of mammalian cell and tissue cultures. J Biomol NMR 49:195–206CrossRefGoogle Scholar
  26. 26.
    Mercier P, Lewis MJ, Chang D et al (2010) Towards automatic metabolic profiling of high-resolution one-dimensional proton NMR spectra. J Biomol NMR 49(3–4):307–323Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Tiago M. Duarte
    • 1
    • 2
  • Nuno Carinhas
    • 1
    • 2
  • Ana Carina Silva
    • 1
    • 2
  • Paula M. Alves
    • 1
    • 2
  • Ana P. Teixeira
    • 1
    • 2
  1. 1.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
  2. 2.iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal

Personalised recommendations