Mutation and Mutation Screening

  • L. Slade Lee
  • Bradley J. Till
  • Helen Hill
  • Owen A. Huynh
  • Joanna Jankowicz-Cieslak
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1099)

Abstract

Molecular techniques have created the opportunity for great advances in plant mutation genetics and the science of mutation breeding. The powerful targeted induced local lesions in genomes (TILLING) technique has introduced the possibility of reverse genetics—the ability to screen for mutations at the DNA level prior to assessing phenotype. Fundamental to TILLING is the induction of mutant populations (or alternatively, the identification of mutants in the environment); and mutation induction requires an understanding and assessment of the appropriate mutagen dose required. The techniques of mutation induction, dose optimization, and TILLING are explained.

Keywords

Mutagens Dose optimization TILLING EcoTILLING EMS 

Notes

Acknowledgments

Authors B.J.T., O.A.H., and J.J-C. wish to thank Kamila Kozak-Stankiewicz for supplying lupine samples used for making Fig. 2c. Funding for the work on low-cost TILLING and EcoTILLING was provided by the Food and Agriculture Organization of the United Nations and the International Atomic Energy Agency through their Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture.

References

  1. 1.
    Muller HJ (1927) Artificial transmutation of the gene. Science 66:84–87PubMedCrossRefGoogle Scholar
  2. 2.
    Stadler LJ (1928) Mutations in barley induced by x-rays and radium. Science 68:186–187PubMedCrossRefGoogle Scholar
  3. 3.
    Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204CrossRefGoogle Scholar
  4. 4.
    Wang ZY, Zheng F, Shen G et al (1995) The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J 7:613–622PubMedCrossRefGoogle Scholar
  5. 5.
    Bradbury LMT, Fitzgerald TL, Henry RJ et al (2005) The gene for fragrance in rice. Plant Biotechnol J 3:363–370PubMedCrossRefGoogle Scholar
  6. 6.
    Juwattanasomran R, Somta P, Chankaew S et al (2011) A SNP in GmBADH2gene associates with fragrance in vegetable soybean variety "Kaori" and SNAP marker development for the fragrance. Theor Appl Genet 122:533–541PubMedCrossRefGoogle Scholar
  7. 7.
    Monna L, Kitazawa N, Yoshino R et al (2002) Positional cloning of rice semidwarfing gene, sd-1: rice "Green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17PubMedCrossRefGoogle Scholar
  8. 8.
    Konishi S, Izawa T, Lin SY et al (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396PubMedCrossRefGoogle Scholar
  9. 9.
    van Harten AM (1998) Mutation Breeding: theory and practical applications. Cambridge University Press, Cambridge, p 113ffGoogle Scholar
  10. 10.
    McCallum CM, Comai L, Greene EA et al (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457PubMedCrossRefGoogle Scholar
  11. 11.
    Wienholds E, van Eeden F, Kosters M et al (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13:2700–2707PubMedCrossRefGoogle Scholar
  12. 12.
    Greene E, Codomo C, Taylor N et al (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genet 164:731–740Google Scholar
  13. 13.
    Li X, Song Y, Century K et al (2001) A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J 27:235–242PubMedCrossRefGoogle Scholar
  14. 14.
    Bruggemann E, Handwerger K, Essex C et al (1996) Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus. Plant J 10:755–760PubMedCrossRefGoogle Scholar
  15. 15.
    Shirley BW, Hanley S, Goodman HM (1992) Effects of ionizing radiation on a plant genome: analysis of two arabidopsis transparent testa mutations. Plant Cell 4:333–347Google Scholar
  16. 16.
    Shikazono N, Suzuki C, Watanabe H et al (2005) Analysis of mutations induced by carbon ions in Arabidopsis thaliana. J Exp Bot 56:587–596Google Scholar
  17. 17.
    Kazama Y, Hirano T, Saito H et al (2011) Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana. BMC Plant Biol 11:161–170Google Scholar
  18. 18.
    Naito K, Kusaba M, Shikazono N et al (2005) Transmissible and nontransmissible mutations induced by irradiating Arabidopsis thaliana pollen with gamma rays and carbon ions. Genet 169:881–889Google Scholar
  19. 19.
    Sato Y, Shirasawa K, Takahashi Y et al (2006) Mutant selection from progeny of gamma-ray-irradiated rice by DNA heteroduplex cleavage using brassica petiole extract. Breed Sci 56:179–183CrossRefGoogle Scholar
  20. 20.
    Harding SS, Mohamad O (2009) Radiosensitivity test on two varieties of Terengganu and Arab used in mutation breeding of roselle (Hibiscus sabdariffa L.). Afr J Plant Sci 3:181–183Google Scholar
  21. 21.
    Plewa MJ, Dowd PA, Wagner ED (1984) Calibration of the maize yg2 assay using gamma radiation and ethylmethanesulfonate. Environ Mutagen 6:781–795PubMedCrossRefGoogle Scholar
  22. 22.
    Sarduie-Nasab S, Sharifi-Sirchi GR, Torabi-Sirchi MH (2010) Assessment of dissimilar gamma irradiations on barley (Hordeum vulgare spp.). J Plant Breed Crop Sci 2:59–63Google Scholar
  23. 23.
    Lundqvist U (1992) Mutation Research in Barley. PhD Thesis. Swedish University of Agricultural Sciences, SvalovGoogle Scholar
  24. 24.
    Koornneeff M, Dellaert LWM, van der Veen JH (1982) EMS- and relation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutat Res 93:109–123CrossRefGoogle Scholar
  25. 25.
    Lee LS, Izquierdo L, Rice N et al (2004) Modifying sorghum starch/protein structure for human consumption. 54th Cereal Chemistry Division Conference of the Royal Australian Chemical Institute. Canberra, pp 308–310Google Scholar
  26. 26.
    Schy WE, Plewa MJ (1989) Molecular dosimetry studies of forward mutation induced at the yg2 locus in maize by ethyl methanesulfonate. Mutat Res 211:231–241PubMedCrossRefGoogle Scholar
  27. 27.
    van Zeeland AA (1996) Molecular dosimetry of chemical mutagens. Relationship between DNA adduct formation and genetic changes analyzed at the molecular level. Mutat Res 353:123–150PubMedCrossRefGoogle Scholar
  28. 28.
    Henikoff S, Comai L (2003) Single-nucleotide mutations for plant functional genomics. Annu Rev Plant Biol 54:375–401PubMedCrossRefGoogle Scholar
  29. 29.
    Laurie DA, Pratchett N, Allen RL et al (1996) RFLP mapping of the barley homeotic mutant lax-a. Theor Appl Genet 93:81–85PubMedCrossRefGoogle Scholar
  30. 30.
    Voylokov AV, Korzun V, Borner A (1998) Mapping of three self-fertility mutations in rye (Secale cereale L.) using RFLP, isozyme and morphological markers. Theor Appl Genet 97:147–153CrossRefGoogle Scholar
  31. 31.
    Williams KJ, Fisher JM, Langridge P (1996) Development of a PCR-based allele-specific assay from an RFLP probe linked to resistance to cereal cyst nematode in wheat. Genome 39:798–801PubMedCrossRefGoogle Scholar
  32. 32.
    Godwin ID, Sangduen N, Kunanuvatchaidach R et al (1997) RAPD polymorphisms among variant and phenotypically normal rice (Oryza sativa var indica) somaclonal progenies. Plant Cell Rep 16:320–324Google Scholar
  33. 33.
    Osipova ES, Koveza OV, Troitskij AV et al (2003) Analysis of specific RAPD and ISSR fragments in maize (Zea mays L.) somaclones and development of SCAR markers on their basis. Russ J Genet 39:1412–1419CrossRefGoogle Scholar
  34. 34.
    Suo GL, Huang ZJ, He CF et al (2001) Identification of the molecular markers linked to the salt-resistance locus in the wheat using RAPD-BSA technique. Acta Botanica Sinica 43:598–602Google Scholar
  35. 35.
    Fu H-W, Li Y-F, Shu Q-Y (2008) A revisit of mutation induction by gamma rays in rice (Oryza sativa L.): implications of microsatellite markers for quality control. Mol Breed 22:281–288CrossRefGoogle Scholar
  36. 36.
    Lu JY, Zhang WL, Xue H et al (2010) Changes in AFLP and SSR DNA polymorphisms induced by short-term space flight of rice seeds. Biol Plantarum 54:112–116CrossRefGoogle Scholar
  37. 37.
    Salina E, Borner A, Leonova I et al (2000) Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum. Theor Appl Genet 100:686–689CrossRefGoogle Scholar
  38. 38.
    Schmidt AL, Mitter V (2004) Microsatellite mutation directed by an external stimulus. Mutat Res 568:233–243PubMedCrossRefGoogle Scholar
  39. 39.
    Castiglioni P, Pozzi C, Heun M et al (1998) An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genet 149:2039–2056Google Scholar
  40. 40.
    Komatsuda T, Maxim P, Senthil N et al (2004) High-density AFLP map of nonbrittle rachis 1 (btr1) and 2 (btr2) genes in barley (Hordeum vulgare L.). Theor Appl Genet 109:986–995PubMedCrossRefGoogle Scholar
  41. 41.
    Pasini L, Stile MR, Puja E et al (2008) The integration of mutant loci affecting maize endosperm development in a dense genetic map using an AFLP-based procedure. Mol Breed 22:527–541CrossRefGoogle Scholar
  42. 42.
    Rashid M, Liu R-H, Jin W et al (2009) Genomic diversity among Basmati rice (Oryza sativa L) mutants obtained through Co-60 gamma radiations using AFLP markers. Afr J Biotechnol 8:6777–6783Google Scholar
  43. 43.
    Wienholds E, Schulte-Merker S, Walderich B et al (2002) Target-selected inactivation of the zebrafish rag1 gene. Science 297:99–102PubMedCrossRefGoogle Scholar
  44. 44.
    Oleykowski CA, Mullins CRB, Godwin AK et al (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26:4597–4602PubMedCrossRefGoogle Scholar
  45. 45.
    McCallum CM, Comai L, Greene EA et al (2000) Targeting Induced Local Lesions IN Genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442PubMedCrossRefGoogle Scholar
  46. 46.
    Caldwell D, McCallum N, Shaw P et al (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40:143–150PubMedCrossRefGoogle Scholar
  47. 47.
    Slade AJ, Knauf VC (2005) TILLING moves beyond functional genomics into crop improvement. Transgenic Res 14:109–115PubMedCrossRefGoogle Scholar
  48. 48.
    Till B, Reynolds S, Weil C et al (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:1471–2229CrossRefGoogle Scholar
  49. 49.
    Xin Z, Li Wang M, Barkley N et al (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103. doi: 10.1186/1471-2229-8-103 PubMedCrossRefGoogle Scholar
  50. 50.
    Cordeiro G, Eliott FG, Henry RJ (2006) An optimized ecotilling protocol for polyploids or pooled samples using a capillary electrophoresis system. Anal Biochem 355:145–147PubMedCrossRefGoogle Scholar
  51. 51.
    Domon E, Saito A, Takeda K (2002) Comparison of the waxy locus sequence from a non-waxy strain and two waxy mutants of spontaneous and artificial origins in barley. Genes Genet Syst 77:351–359PubMedCrossRefGoogle Scholar
  52. 52.
    Szantai E, Ronai Z, Szilagyi A et al (2005) Haplotyping by capillary electrophoresis. J Chromatogr A 1079:41–49PubMedCrossRefGoogle Scholar
  53. 53.
    Tsai H, Howell T, Nitcher R et al (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156:1257–1268. doi: 10.1104/pp. 110.169748 PubMedCrossRefGoogle Scholar
  54. 54.
    Till BJ, Zerr T, Comai L et al (2006) A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc 1:2465–2477. doi: 10.1038/nprot.2006.329 PubMedCrossRefGoogle Scholar
  55. 55.
    Till BJ, Reynolds SH, Greene EA et al (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530. doi: 10.1101/gr.977903 PubMedCrossRefGoogle Scholar
  56. 56.
    Jankowicz-Cieslak J, Huynh OA, Bado S et al (2011) Reverse-genetics by TILLING expands through the plant kingdom. Emir J Food Agric 23:290–300Google Scholar
  57. 57.
    Till BJ, Burtner C, Comai L et al (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32:2632–2641, 32/8/2632 [pii] 10.1093/nar/gkh599 PubMedCrossRefGoogle Scholar
  58. 58.
    Triques K, Piednoir E, Dalmais M et al (2008) Mutation detection using ENDO1: application to disease diagnostics in humans and TILLING and Eco-TILLING in plants. BMC Mol Biol 9:42. doi: 10.1186/1471-2199-9-42 PubMedCrossRefGoogle Scholar
  59. 59.
    Stephenson P, Baker D, Girin T et al (2010) A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biol 10:62. doi: 10.1186/1471-2229-10-62 PubMedCrossRefGoogle Scholar
  60. 60.
    Ramos ML, Huntley JJ, Maleki SJ et al (2009) Identification and characterization of a hypoallergenic ortholog of Ara h 2.01. Plant Mol Biol 69:325–335. doi: 10.1007/s11103-008-9428-z PubMedCrossRefGoogle Scholar
  61. 61.
    Slade AJ, Fuerstenberg SI, Loeffler D et al (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81. doi: 10.1038/nbt1043 PubMedCrossRefGoogle Scholar
  62. 62.
    Blomstedt CK, Gleadow RM, O'Donnell N et al (2012) A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnol J 10:54–66. doi: 10.1111/j.1467-7652.2011.00646.x PubMedCrossRefGoogle Scholar
  63. 63.
    Till BJ, Reynolds SH, Weil C et al (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12. doi: 10.1186/1471-2229-4-12 PubMedCrossRefGoogle Scholar
  64. 64.
    Cooper JL, Till BJ, Laport RG et al (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8:9. doi: 10.1186/1471-2229-8-9 PubMedCrossRefGoogle Scholar
  65. 65.
    Till BJ, Cooper J, Tai TH et al (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19. doi: 10.1186/1471-2229-7-19 PubMedCrossRefGoogle Scholar
  66. 66.
    Marroni F, Pinosio S, Di Centa E et al (2011) Large-scale detection of rare variants via pooled multiplexed next-generation sequencing: towards next-generation Ecotilling. Plant J 67:736–745. doi: 10.1111/j.1365-313X.2011.04627.x PubMedCrossRefGoogle Scholar
  67. 67.
    Till BJ, Zerr T, Bowers E et al (2006) High-throughput discovery of rare human nucleotide polymorphisms by Ecotilling. Nucleic Acids Res 34:e99, 34/13/e99 [pii] 10.1093/nar/gkl479 PubMedCrossRefGoogle Scholar
  68. 68.
    Till BJ, Jankowicz-Cieslak J, Sagi L et al (2010) Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling. Theor Appl Genet 121:1381–1389. doi: 10.1007/s00122-010-1395-5 PubMedCrossRefGoogle Scholar
  69. 69.
    Botticella E, Sestili F, Hernandez-Lopez A et al (2011) High resolution melting analysis for the detection of EMS induced mutations in wheat SBEIIa genes. BMC Plant Biol 11:156. doi: 10.1186/1471-2229-11-156 PubMedCrossRefGoogle Scholar
  70. 70.
    Vriet C, Welham T, Brachmann A et al (2010) A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism. Plant Physiol 154:643–655. doi: 10.1104/pp. 110.161844 PubMedCrossRefGoogle Scholar
  71. 71.
    Cross MJ, Waters DL, Lee LS et al (2008) Endonucleolytic mutation analysis by internal labeling (EMAIL). Electrophoresis 29:1291–1301. doi: 10.1002/elps.200700452 PubMedCrossRefGoogle Scholar
  72. 72.
    Wang TL, Uauy C, Robson F et al (2012) TILLING in extremis. Plant Biotechnol J 10:761–772. doi: 10.1111/j.1467-7652.2012.00708.x PubMedCrossRefGoogle Scholar
  73. 73.
    Zerr T, Henikoff S (2005) Automated band mapping in electrophoretic gel images using background information. Nucleic Acids Res 33(9):2806–2812, 33/9/2806 [pii] 10.1093/nar/gki580 PubMedCrossRefGoogle Scholar
  74. 74.
    Abramoff MD, Magalhael PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics International 11:36–42Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • L. Slade Lee
    • 1
  • Bradley J. Till
    • 2
  • Helen Hill
    • 3
  • Owen A. Huynh
    • 2
  • Joanna Jankowicz-Cieslak
    • 2
  1. 1.Cooperative Research Centre for Remote Economic Participation, Division of ResearchSouthern Cross UniversityLismoreAustralia
  2. 2.Plant Breeding and Genetics LaboratoryJoint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories SeibersdorfViennaAustria
  3. 3.Southern Cross Plant ScienceSouthern Cross UniversityLismoreAustria

Personalised recommendations