Analysis of Methanotroph Community Structure Using a pmoA-Based Microarray

  • Guy C. J. Abell
  • Nancy Stralis-Pavese
  • Yao Pan
  • Levente Bodrossy
Part of the Methods in Molecular Biology book series (MIMB, volume 1096)


The analysis of methanotroph community composition is relevant to studies of methane oxidation in a number of environments where methane is a significant carbon source. The development and application of a microarray targeting the particulate methane monooxygenase gene (pmoA) have allowed a high-throughput, semiquantitative analysis of the major methanotroph groups in a number of different environments.

Here we describe the use of a pmoA-based short oligo array for the analysis of methanotroph populations in sediment samples. The method is suitable for analysis of any type of environmental sample from which DNA can be extracted.

Key words

Microarray Methanotroph pmoA Hybridization 



This research was supported by the ESF EuroDiversity programme METHECO (No. FP018, local funding agencies: FWF, Austria, project number I40-B06). We would also like to thank Dr. Deepak Kumaresan for critical evaluation of the manuscript.


  1. 1.
    Bodrossy L et al (2003) Development and validation of a diagnostic microbial microarray for methanotrophs. Environ Microbiol 5:566–582PubMedCrossRefGoogle Scholar
  2. 2.
    Stralis-Pavese N et al (2004) Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environ Microbiol 6:347–363PubMedCrossRefGoogle Scholar
  3. 3.
    Stralis-Pavese N et al (2011) Analysis of methanotroph community composition using a pmoA-based microbial diagnostic microarray. Nat Protoc 6:609–624PubMedCrossRefGoogle Scholar
  4. 4.
    Abell GCJ et al (2009) Grazing affects methanotroph activity and diversity in an alpine meadow soil. Environ Microbiol Rep 1:457–465PubMedCrossRefGoogle Scholar
  5. 5.
    Han B et al (2009) Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine. FEMS Microbiol Ecol 70:40–51PubMedGoogle Scholar
  6. 6.
    Moussard H et al (2009) Identification of active methylotrophic bacteria inhabiting surface sediment of a marine estuary. Environ Microbiol Rep 1:424–433PubMedCrossRefGoogle Scholar
  7. 7.
    Chen Y et al (2008) Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Environ Microbiol 10:446–459PubMedCrossRefGoogle Scholar
  8. 8.
    Kip N et al (2010) Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci 3:617–621CrossRefGoogle Scholar
  9. 9.
    Pan Y et al (2010) Impacts of inter- and intralaboratory variations on the reproducibility of microbial community analyses. Appl Environ Microbiol 76:7451–7458PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Bodrossy L et al (2006) mRNA-based parallel detection of active methanotroph populations using a diagnostic microarray. Appl Environ Microbiol 72:1672–1676PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Guy C. J. Abell
    • 1
  • Nancy Stralis-Pavese
    • 2
    • 3
  • Yao Pan
    • 2
  • Levente Bodrossy
    • 1
    • 2
  1. 1.CSIRO Marine and Atmospheric Research and Wealth from Ocean FlagshipHobartAustralia
  2. 2.Department of BioresourcesAustrian Institute of TechnologySeibersdorfAustria
  3. 3.Department of BiotechnologyUniversity of Natural Resources and Applied Life SciencesViennaAustria

Personalised recommendations