MicroRNA Target Finding by Comparative Genomics

  • Robin C. Friedman
  • Christopher B. Burge
Part of the Methods in Molecular Biology book series (MIMB, volume 1097)


MicroRNAs (miRNAs) have been implicated in virtually every metazoan biological process, exerting a widespread impact on gene expression. MicroRNA repression is conferred by relatively short “seed match” sequences, although the degree of repression varies widely for individual target sites. The factors controlling whether, and to what extent, a target site is repressed are not fully understood. As an alternative to target prediction based on sequence alone, comparative genomics has emerged as an invaluable tool for identifying miRNA targets that are conserved by natural selection, and hence likely effective and important. Here we present a general method for quantifying conservation of miRNA seed match sites, separating it from background conservation, controlling for various biases, and predicting miRNA targets. This method is useful not only for generating predictions but also as a tool for empirically evaluating the importance of various target prediction criteria.

Key words

Comparative genomics Conservation Natural selection MicroRNAs miRNAs 3 UTRs Seed matches 



The TargetScan algorithm described was co-developed with David P. Bartel and was based on work by Kyle Kai-How Farh. The authors thank David Bartel and Vikram Agarwal for helpful discussions and the US Department of Energy Office of Science for funding the development of this algorithm.


  1. 1.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854PubMedCrossRefGoogle Scholar
  2. 2.
    Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5): 855–862PubMedCrossRefGoogle Scholar
  3. 3.
    Moss EG, Lee RC, Ambros V (1997) The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88(5): 637–646PubMedCrossRefGoogle Scholar
  4. 4.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906. doi:10.1038/35002607PubMedCrossRefGoogle Scholar
  5. 5.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRefGoogle Scholar
  6. 6.
    Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15(2):188–200PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Hutvágner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297(5589):2056–2060. doi:10.1126/science.1073827PubMedCrossRefGoogle Scholar
  8. 8.
    Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71. doi:10.1038/nature07242PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky, N Widespread changes in protein synthesis induced by microRNAs (2008) Nature 455(7209):58–63. doi:10.1038/nature07228Google Scholar
  10. 10.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17(4):438–442. doi:10.1101/gad.1064703PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Lai EC (2002) Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30(4):363–364. doi:10.1038/ng865PubMedCrossRefGoogle Scholar
  13. 13.
    Stark A, Brennecke J, Russell RB, Cohen SM (2003) Identification of Drosophila microRNA targets. PLoS Biol 1(3):E60. doi:10.1371/journal.pbio.0000060PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5(1):R1. doi:10.1186/gb-2003-5-1-r1PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798PubMedCrossRefGoogle Scholar
  16. 16.
    Rajewsky N, Socci ND (2004) Computational identification of microRNA targets. Dev Biol 267(2):529–535. doi:10.1016/j.ydbio.2003.12.003PubMedCrossRefGoogle Scholar
  17. 17.
    John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2(11):e363. doi:10.1371/journal.pbio.0020363PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Rajewsky N (2006) microRNA target predictions in animals. Nat Genet 38(Suppl):S8–S13. doi:10.1038/ng1798PubMedCrossRefGoogle Scholar
  19. 19.
    Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18(5):504–511. doi:10.1101/gad.1184404PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20. doi:10.1016/j.cell.2004.12.035PubMedCrossRefGoogle Scholar
  21. 21.
    Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3(3):e85. doi:10.1371/journal.pbio.0030085PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM (2005) Animal microRNAs confer robustness to gene expression and have a significant impact on 3’UTR evolution. Cell 123(6):1133–1146. doi:10.1016/j.cell.2005.11.023PubMedCrossRefGoogle Scholar
  23. 23.
    Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, EJ Epstein, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500. doi:10.1038/ng1536PubMedCrossRefGoogle Scholar
  24. 24.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773. doi:10.1038/nature03315PubMedCrossRefGoogle Scholar
  25. 25.
    Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J, Marshall WS, Khvorova A (2006) 3’ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Method 3(3):199–204. doi:10.1038/nmeth854CrossRefGoogle Scholar
  26. 26.
    Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity RNA. 12(7):1179–1187. doi:10.1261/rna.25706PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105. doi:10.1016/j.molcel.2007.06.017PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB (2007) Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13(11):1894–1910. doi:10.1261/rna. 768207PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310(5755):1817–1821. doi:10.1126/science.1121158PubMedCrossRefGoogle Scholar
  30. 30.
    Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105. doi:10.1101/gr.082701.108PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284. doi:10.1038/ng2135PubMedCrossRefGoogle Scholar
  32. 32.
    Hausser J, Landthaler M, Jaskiewicz L, Gaidatzis D, Zavolan M (2009) Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C-miRNA complexes and the degradation of miRNA targets. Genome Res 19(11):2009–2020. doi:10.1101/gr.091181.109PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Felsenstein J (1989) PHYLIP: phylogenetic inference package. Cladistics 5(2): 163–166CrossRefGoogle Scholar
  34. 34.
    Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, Carlson JW, Crosby MA, Rasmussen MD, Roy S, Deoras AN, Ruby JG, Brennecke J, Harvard FlyBase curators, Berkeley Drosophila Genome Project, Hodges E, Hinrichs AS, Caspi A, Paten B, Park S-W, Han MV, Maeder ML, Polansky BJ, Robson BE, Aerts S, van Helden J, Hassan B, Gilbert DG, Eastman DA, Rice M, Weir M, Hahn MW, Park Y, Dewey CN, Pachter L, Kent WJ, Haussler D, Lai EC, Bartel DP, Hannon GJ, Kaufman TC, Eisen MB, Clark AG, Smith D, Celniker SE, Gelbart WM, Kellis M (2007a) Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 450(7167): 219–232. doi:10.1038/nature06340Google Scholar
  35. 35.
    Stark A, Kheradpour P, Parts L, Brennecke J, Emily H, Hannon GJ, Kellis M (2007b) Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. Genome Res 17(12):1865–1879. doi:10.1101/gr.6593807PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Altenhoff AM, Dessimoz C (2009) Phylogenetic and functional assessment of orthologs inference projects and methods. PLoS Comput Biol 5(1):e1000262. doi:10.1371/journal.pcbi.1000262PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Chen X, Tompa M (2010) Comparative assessment of methods for aligning multiple genome sequences. Nat Biotechnol 28(6):567–572. doi:10.1038/nbt.1637PubMedCrossRefGoogle Scholar
  38. 38.
    Lall S, Grün D, Krek A, Chen K, Wang Y-L, Dewey CN, Sood P, Colombo T, Bray N, MacMenamin P, Kao H-L, Gunsalus KC, Pachter L, Piano F, Rajewsky N (2006) A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 16(5):460–471. doi:10.1016/j.cub.2006. 01.050PubMedCrossRefGoogle Scholar
  39. 39.
    Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M (2007) Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8:69. doi:10.1186/1471-2105- 8-69PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Schnall-Levin M, Zhao Y, Perrimon N, Berger B (2010) Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3’UTRs. P Natl Acad Sci USA. doi:10.1073/pnas.1006172107Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Robin C. Friedman
    • 1
  • Christopher B. Burge
    • 2
  1. 1.Institut PasteurParisFrance
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations