The Art of Editing RNA Structural Alignments

  • Ebbe Sloth Andersen
Part of the Methods in Molecular Biology book series (MIMB, volume 1097)


Manual editing of RNA structural alignments may be considered more art than science, since it still requires an expert biologist to take multiple levels of information into account and be slightly creative when constructing high-quality alignments. Even though the task is rather tedious, it is rewarded by great insight into the evolution of structure and function of your favorite RNA molecule. In this chapter I will review the methods and considerations that go into constructing RNA structural alignments at the secondary and tertiary structure level; introduce software, databases, and algorithms that have proven useful in semiautomating the work process; and suggest future directions towards full automatization.

Key words

RNA structural alignment Comparative analysis Secondary structure Tertiary structure Software Databases Algorithms 


  1. 1.
    Pace NR, Thomas BC, Woese CR (1999) Probing RNA structure, function, and history by comparative analysis. The RNA world, 2nd edn. Gesteland RF, Cech TR, Atkins JF (eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 113–141Google Scholar
  2. 2.
    Ehresmann C et al (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15(22):9109–9128PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Ban N, Nissen P, Hansen J, Moore P, Steitz T (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289(5481):905–920CrossRefPubMedGoogle Scholar
  4. 4.
    Wimberly BT et al (2000) Structure of the 30S ribosomal subunit. Nature 407(6802): 327–339CrossRefPubMedGoogle Scholar
  5. 5.
    Olsen GJ, Larsen N, Woese CR (1991) The ribosomal RNA database project. Nucleic Acids Res 19 Suppl:2017–2021Google Scholar
  6. 6.
    Brown JW (1999) The ribonuclease P database. Nucleic Acids Res 27(1):314PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Zwieb C, Larsen N, Wower J (1998) The tmRNA database (tmRDB). Nucleic Acids Res 26(1):166–167PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Williams KP, Bartel DP (1998) The tmRNA website. Nucleic Acids Res 26(1):163–165PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Larsen N, Zwieb C (1993) The signal recognition particle database (SRPDB). Nucleic Acids Res 21(13):3019–3020PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: an RNA family database. Nucleic Acids Res 31(1): 439–441PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Leontis NB, Westhof E (1998) Conserved geometrical base-pairing patterns in RNA. Q Rev Biophys 31(4):399–455CrossRefPubMedGoogle Scholar
  12. 12.
    Waugh A et al (2002) RNAML: a standard syntax for exchanging RNA information. RNA 8(6):707–717PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Brown JW et al (2009) The RNA structure alignment ontology. RNA 15(9): 1623–1631PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    De Rijk P, De Wachter R (1993) DCSE, an interactive tool for sequence alignment and secondary structure research. Comput Appl Biosci 9(6):735–740PubMedGoogle Scholar
  15. 15.
    De Oliveira T, Miller R, Tarin M, Cassol S (2003) An integrated genetic data environment (GDE)-based LINUX interface for analysis of HIV-1 and other microbial sequences. Bioinformatics 19(1):153–154CrossRefPubMedGoogle Scholar
  16. 16.
    Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 20(3):426–427CrossRefPubMedGoogle Scholar
  17. 17.
    Luck R, Graf S, Steger G (1999) ConStruct: a tool for thermodynamic controlled prediction of conserved secondary structure. Nucleic Acids Res 27(21):4208–4217PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Ludwig W et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32(4):1363–1371PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Griffiths-Jones S (2005) RALEE—RNA ALignment editor in Emacs. Bioinformatics 21(2):257–259CrossRefPubMedGoogle Scholar
  20. 20.
    Seibel PN, Muller T, Dandekar T, Schultz J, Wolf M (2006) 4SALE—a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics 7:498PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Andersen ES et al (2007) Semiautomated improvement of RNA alignments. RNA 13(11):1850–1859PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Jossinet F, Westhof E (2005) Sequence to Structure (S2S): display, manipulate and interconnect RNA data from sequence to structure. Bioinformatics 21(15):3320–3321CrossRefPubMedGoogle Scholar
  23. 23.
    Stombaugh J, Widmann J, McDonald D, Knight R (2011) Boulder ALignment Editor (ALE): a web-based RNA alignment tool. Bioinformatics 27(12):1706–1707PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Widmann J et al (2012) RNASTAR: an RNA STructural Alignment Repository that provides insight into the evolution of natural and artificial RNAs. RNA 18(7):1319–1327PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Gorodkin J, Zwieb C, Knudsen B (2001) Semi-automated update and cleanup of structural RNA alignment databases. Bioinformatics 17(7):642–645CrossRefPubMedGoogle Scholar
  26. 26.
    Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31(13):3429–3431PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Knudsen B, Hein J (1999) RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics 15(6):446–454CrossRefPubMedGoogle Scholar
  28. 28.
    Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31(13):3423–3428PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Hofacker IL, Fekete M, Stadler PF (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319(5):1059–1066CrossRefPubMedGoogle Scholar
  30. 30.
    Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31(13):3423–3428PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Havgaard JH, Lyngso RB, Stormo GD, Gorodkin J (2005) Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics 21(9):1815–1824CrossRefPubMedGoogle Scholar
  32. 32.
    Hofacker IL, Bernhart SH, Stadler PF (2004) Alignment of RNA base pairing probability matrices. Bioinformatics 20(14):2222– 2227CrossRefPubMedGoogle Scholar
  33. 33.
    Mathews DH, Turner DH (2002) Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J Mol Biol 317(2):191–203CrossRefPubMedGoogle Scholar
  34. 34.
    Mathews DH (2005) Predicting a set of minimal free energy RNA secondary structures common to two sequences. Bioinformatics 21(10):2246–2253CrossRefPubMedGoogle Scholar
  35. 35.
    Holmes I (2005) Accelerated probabilistic inference of RNA structure evolution. BMC Bioinformatics 6(1):73PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Holmes I, Rubin GM (2002) Pairwise RNA structure comparison with stochastic context-free grammars. Pac Symp Biocomput: 163–174Google Scholar
  37. 37.
    Reeder J, Giegerich R (2005) Consensus shapes: an alternative to the Sankoff algorithm for RNA consensus structure prediction. Bioinformatics 21(17):3516–3523CrossRefPubMedGoogle Scholar
  38. 38.
    Yao Z, Weinberg Z, Ruzzo WL (2006) CMfinder—a covariance model based RNA motif finding algorithm. Bioinformatics 22(4):445–452CrossRefPubMedGoogle Scholar
  39. 39.
    Torarinsson E, Havgaard JH, Gorodkin J (2007) Multiple structural alignment and clustering of RNA sequences. Bioinformatics 23:926–932Google Scholar
  40. 40.
    Leontis NB, Stombaugh J, Westhof E (2002) The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30(16):3497–3531PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Andersen ES (2010) Prediction and design of DNA and RNA structures. New Biotechnol 27(3):184–193CrossRefGoogle Scholar
  42. 42.
    Jaeger L, Chworos A (2006) The architectonics of programmable RNA and DNA nanostructures. Curr Opin Struct Biol 16(4):531–543CrossRefPubMedGoogle Scholar
  43. 43.
    Geary C, Baudrey S, Jaeger L (2008) Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors. Nucleic Acids Res 36(4):1138–1152PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Jaeger L, Verzemnieks EJ, Geary C (2009) The UA handle: a versatile submotif in stable RNA architectures. Nucleic Acids Res 37(1): 215–230PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Geary C, Chworos A, Jaeger L (2011) Promoting RNA helical stacking via A-minor junctions. Nucleic Acids Res 39(3):1066– 1080PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Leontis N, Stombaugh J, Westhof E (2002) The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30(16):3497–3531PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ebbe Sloth Andersen
    • 1
    • 2
  1. 1.Department of Molecular BiologyAarhus UniversityAarhusDenmark
  2. 2.Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark

Personalised recommendations