Concepts and Introduction to RNA Bioinformatics

  • Jan Gorodkin
  • Ivo L. Hofacker
  • Walter L. Ruzzo
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1097)

Abstract

RNA bioinformatics and computational RNA biology have emerged from implementing methods for predicting the secondary structure of single sequences. The field has evolved to exploit multiple sequences to take evolutionary information into account, such as compensating (and structure preserving) base changes. These methods have been developed further and applied for computational screens of genomic sequence. Furthermore, a number of additional directions have emerged. These include methods to search for RNA 3D structure, RNA–RNA interactions, and design of interfering RNAs (RNAi) as well as methods for interactions between RNA and proteins.

Here, we introduce the basic concepts of predicting RNA secondary structure relevant to the further analyses of RNA sequences. We also provide pointers to methods addressing various aspects of RNA bioinformatics and computational RNA biology.

Key words

Mutual information RNA folding RNA prediction evaluation RNA secondary structure RNA structure prediction 

References

  1. 1.
    Amaral PP, Dinger ME, Mercer TR, John S (2008) The eukaryotic genome as an RNA machine. Science 319(5871):1787–1789PubMedGoogle Scholar
  2. 2.
    Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010). Non-coding RNAs: regulators of disease. J Pathol 220(2):126–139PubMedGoogle Scholar
  3. 3.
    Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12(2):136–149PubMedGoogle Scholar
  4. 4.
    Zhou H, Hu H, Lai M (2010) Non-coding RNAs and their epigenetic regulatory mechanisms. Biol Cell 102(12):645–655PubMedGoogle Scholar
  5. 5.
    Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E, Moscato P, Dinger ME, Mattick JS (2012) Genome-wide analysis of long noncoding RNA stability. Genome Res 22(5):885–898PubMedCentralPubMedGoogle Scholar
  6. 6.
    Costa FF (2005) Non-coding RNAs: new players in eukaryotic biology. Gene 357(2):83–94PubMedGoogle Scholar
  7. 7.
    Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415: 810–813PubMedGoogle Scholar
  8. 8.
    Parisien M, Major F (2008) The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452(7183): 51–55PubMedGoogle Scholar
  9. 9.
    Rother M, Rother K, Puton T, Bujnicki JM (2011) ModeRNA: a tool for comparative modeling of RNA 3D structure. Nucleic Acids Res 39(10):4007–4022PubMedCentralPubMedGoogle Scholar
  10. 10.
    Kladwang W, VanLang CC, Cordero P, Das R (2011) A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nat Chem 3(12):954–962PubMedCentralPubMedGoogle Scholar
  11. 11.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242PubMedCentralPubMedGoogle Scholar
  12. 12.
    Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689–693PubMedCentralPubMedGoogle Scholar
  13. 13.
    Novikova IV, Hennelly SP, Sanbonmatsu KY (2012) Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res 40(11):5034–5051PubMedCentralPubMedGoogle Scholar
  14. 14.
    The FANTOM Consortium and the RIKEN Genome Research Group Phase I & II Team (2002) Analysis of the mouse transcriptome based on functional annotation of 66,770 full-length cDNAs. Nature 420:563–573Google Scholar
  15. 15.
    Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641PubMedGoogle Scholar
  16. 16.
    Jia H, Osak M, Bogu GK, Stanton LW, Johnson R, Lipovich L (2010) Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16:1478–1487PubMedCentralPubMedGoogle Scholar
  17. 17.
    Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS (2011) lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 39:D146–D151PubMedCentralPubMedGoogle Scholar
  18. 18.
    Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927PubMedCentralPubMedGoogle Scholar
  19. 19.
    Moran VA, Perera RJ, Khalil AM (2012) Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res 40(14):6391–6400PubMedCentralPubMedGoogle Scholar
  20. 20.
    Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147(7):1537–1550PubMedCentralPubMedGoogle Scholar
  21. 21.
    Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356PubMedGoogle Scholar
  22. 22.
    International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921Google Scholar
  23. 23.
    Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299:1540PubMedGoogle Scholar
  24. 24.
    Omer AD, Lowe TM, Russell AG, Ebhardt H, Eddy SR, Dennis PP (2000) Homologs of small nucleolar RNAs in Archaea. Science 288(5465):517–522PubMedGoogle Scholar
  25. 25.
    Ames TD, Rodionov DA, Weinberg Z, Breaker RR (2010) A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. Chem Biol 17(7):681–685PubMedCentralPubMedGoogle Scholar
  26. 26.
    Weinberg Z, Perreault J, Meyer MM, Breaker RR (2009) Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis. Nature 462(7273): 656–659PubMedGoogle Scholar
  27. 27.
    Trausch JJ, Ceres P, Reyes FE, Batey RT (2011) The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure 19(10):1413–1423PubMedCentralPubMedGoogle Scholar
  28. 28.
    Hanson RM (2010) Jmol—a paradigm shift in crystallographic visualization. J Appl Crystallogr 43:1250–1260Google Scholar
  29. 29.
    Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, Griffiths-Jones S, Finn RD, Nawrocki EP, Kolbe DL, Eddy SR, Bateman A (2011) Rfam: Wikipedia, clans and the “decimal” release. Nucleic Acids Res 39(Database issue):D141–D145PubMedCentralPubMedGoogle Scholar
  30. 30.
    Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26Google Scholar
  31. 31.
    Piccinelli P, Rosenblad MA, Samuelsson T (2005) Identification and analysis of ribonuclease P and MRP RNA in a broad range of eukaryotes. Nucleic Acids Res 33(14):4485–4495PubMedCentralPubMedGoogle Scholar
  32. 32.
    Xie M, Mosig A, Qi X, Li Y, Stadler PF, Chen JJ (2008) Structure and function of the smallest vertebrate telomerase RNA from teleost fish. J Biol Chem 283(4):2049– 2059PubMedGoogle Scholar
  33. 33.
    Stadler PF, Chen JJ, Hackermuller J, Hoffmann S, Horn F, Khaitovich P, Kretzschmar AK, Mosig A, Prohaska SJ, Qi X, Schutt K, Ullmann K (2009) Evolution of vault RNAs. Mol Biol Evol 26(9):1975–1991PubMedGoogle Scholar
  34. 34.
    Gorodkin J, Hofacker IL, Torarinsson E, Yao Z, Havgaard JH, Ruzzo WL (2010) De novo prediction of structured RNAs from genomic sequences. Trends Biotechnol 28:9–19PubMedGoogle Scholar
  35. 35.
    Torarinsson E, Sawera M, Havgaard JH, Fredholm M, Gorodkin J (2006) Thousands of corresponding human and mouse genomic regions unalignable in primary sequence contain common RNA structure. Genome Res 16(7):885–889PubMedCentralPubMedGoogle Scholar
  36. 36.
    Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS, Goldman M, Barber GP, Clawson H, Coelho A, Diekhans M, Dreszer TR, Giardine BM, Harte RA, Hillman-Jackson J, Hsu F, Kirkup V, Kuhn RM, Learned K, Li CH, Meyer LR, Pohl A, Raney BJ, Rosenbloom KR, Smith KE, Haussler D, Kent WJ (2011) The UCSC Genome Browser database: update 2011. Nucleic Acids Res 39(Database issue):D876–D882PubMedCentralPubMedGoogle Scholar
  37. 37.
    Gorodkin J, Hofacker IL (2011) From structure prediction to genomic screens for novel non-coding RNAs. PLoS Comput Biol 7:e1002100PubMedCentralPubMedGoogle Scholar
  38. 38.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCentralPubMedGoogle Scholar
  39. 39.
    Rivas E, Eddy S (2000) Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics 7:583–605Google Scholar
  40. 40.
    Workman C, Krogh A (1999) No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution. Nucleic Acids Res 27:4816–4822PubMedCentralPubMedGoogle Scholar
  41. 41.
    Washietl S, Hofacker IL (2004) Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics. J Mol Biol 342: 19–30PubMedGoogle Scholar
  42. 42.
    Gesell T, Washietl S (2008) Dinucleotide controlled null models for comparative RNA gene prediction. BMC Bioinformatics 9:248PubMedCentralPubMedGoogle Scholar
  43. 43.
    Anandam P, Torarinsson E, Ruzzo WL (2009) Multiperm: shuffling multiple sequence alignments while approximately preserving dinucleotide frequencies. Bioinformatics 25(5):668–669PubMedGoogle Scholar
  44. 44.
    Lu ZJ, Yip KY, Wang G, Shou C, Hillier LW, Khurana E, Agarwal A, Auerbach R, Rozowsky J, Cheng C, Kato M, Miller DM, Slack F, Snyder M, Waterston RH, Reinke V, Gerstein MB (2011) Prediction and characterization of noncoding RNAs in C. elegans by integrating conservation, secondary structure, and high-throughput sequencing and array data. Genome Res 21(2):276–285PubMedCentralPubMedGoogle Scholar
  45. 45.
    Underwood JG, Uzilov AV, Katzman S, Onodera CS, Mainzer JE, Mathews DH, Lowe TM, Salama SR, Haussler D (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods 7(12):995–1001PubMedCentralPubMedGoogle Scholar
  46. 46.
    Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC, Chang HY, Segal E (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467(7311):103–107PubMedGoogle Scholar
  47. 47.
    Deigan KE, Li TW, Mathews DH, Weeks KM (2009) Accurate SHAPE-directed RNA structure determination. Proc Natl Acad Sci USA 106(1):97–102PubMedCentralPubMedGoogle Scholar
  48. 48.
    Washietl S, Hofacker IL, Stadler PF, Kellis M (2012) RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction. Nucleic Acids Res 40(10):4261– 4272PubMedCentralPubMedGoogle Scholar
  49. 49.
    Hogeweg P, Hesper B (1984) Energy directed folding of RNA sequences. Nucleic Acids Res 12(1 Pt 1):67–74PubMedCentralPubMedGoogle Scholar
  50. 50.
    Le SY, Nussinov R, Maizel JV (1989) Tree graphs of RNA secondary structures and their comparisons. Comput Biomed Res 22(5):461–473PubMedGoogle Scholar
  51. 51.
    Dowell RD, Eddy SR (2004) Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction. BMC Bioinformatics 5:71PubMedCentralPubMedGoogle Scholar
  52. 52.
    Nussinov R, Piecznik G, Grigg JR, Kleitman DJ (1978) Algorithms for loop matchings. SIAM J Appl Math 35:62–82Google Scholar
  53. 53.
    Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence analysis. Cambridge University Press, CambridgeGoogle Scholar
  54. 54.
    Rivas E, Eddy SR (1999) A dynamic programming algorithm for RNA structure prediction including pseudoknots. J Mol Biol 285(5):2053–2068PubMedGoogle Scholar
  55. 55.
    McCaskill JS (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structures. Biopolymers 29:1105–1119PubMedGoogle Scholar
  56. 56.
    Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Gordon L, Hendrix M, Hourlier T, Johnson N, Kahari AK, Keefe D, Keenan S, Kinsella R, Komorowska M, Koscielny G, Kulesha E, Larsson P, Longden I, McLaren W, Muffato M, Overduin B, Pignatelli M, Pritchard B, Riat HS, Ritchie GR, Ruffier M, Schuster M, Sobral D, Tang YA, Taylor K, Trevanion S, Vandrovcova J, White S, Wilson M, Wilder SP, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernandez-Suarez XM, Harrow J, Herrero J, Hubbard TJ, Parker A, Proctor G, Spudich G, Vogel J, Yates A, Zadissa A, Searle SM (2012) Ensembl 2012. Nucleic Acids Res 40(Database issue):84–90Google Scholar
  57. 57.
    Pace NR, Thomas BR, Woese CR (1999) Probing RNA structure, function, and history by comparative analysis. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world. Cold Spring Harbor, New York, pp 113–141Google Scholar
  58. 58.
    Hertz GZ, Hartzell GW III, Stormo GD (1990) Identification of consensus patterns in unaligned DNA sequences known to be functionally related. CABIOS 6:81–92PubMedGoogle Scholar
  59. 59.
    Lindgreen S, Gardner PP, Krogh A (2006) Measuring covariation in RNA alignments: physical realism improves information measures. Bioinformatics 22:2988–2995. doi:10.1093/bioinformatics/btl514PubMedGoogle Scholar
  60. 60.
    Gorodkin J, Stærfeldt HH, Lund O, Brunak S (1999) Matrixplot: visualizing sequence constraints. Bioinformatics 15:769–770. http://www.cbs.dtu.dk/services/MatrixPlot/ Google Scholar
  61. 61.
    Schneider TD, Stephens RM (1990) Sequence logos: a new way to display concensus sequences. Nucleic Acids Res 18:6097–6100PubMedCentralPubMedGoogle Scholar
  62. 62.
    Gorodkin J, Heyer LJ, Brunak S, Stormo GD (1997) Displaying the information contents of structural RNA alignments: the structure logos. CABIOS 13:583–586. http://www.cbs.dtu.dk/~gorodkin/appl/slogo.html Google Scholar
  63. 63.
    Chang TH, Horng JT, Huang HD (2008) RNALogo: a new approach to display structural RNA alignment. Nucleic Acids Res 36(Web Server issue):W91–W96Google Scholar
  64. 64.
    Gutell RR, Power A, Hertz GZ, Putz E, Stormo GD (1992) Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Res 20:5785–5795PubMedCentralPubMedGoogle Scholar
  65. 65.
    Hofacker IL, Fekete M, Stadler PF (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319:1059–1066PubMedGoogle Scholar
  66. 66.
    Menzel P, Seemann SE, Gorodkin J (2012) RIlogo: visualising RNA-RNA interactions. Bioinformatics 28(19):2523–2526. http://rth.dk/resources/rilogo Google Scholar
  67. 67.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415PubMedCentralPubMedGoogle Scholar
  68. 68.
    Lyngsø RB, Pedersen CN (2000) RNA pseudoknot prediction in energy-based models. J Comput Biol 7(3–4):409–427PubMedGoogle Scholar
  69. 69.
    Ji Y, Xu X, Stormo GD (2004) A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences. Bioinformatics 20(10):1591–1602PubMedGoogle Scholar
  70. 70.
    Sato K, Kato Y, Hamada M, Akutsu T, Asai K (2011) IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics 27(13):85–93Google Scholar
  71. 71.
    Reidys CM, Huang FW, Andersen JE, Penner RC, Stadler PF, Nebel ME (2012) Addendum: topology and prediction of RNA pseudoknots. Bioinformatics 28(2):300PubMedGoogle Scholar
  72. 72.
    Mohl M, Salari R, Will S, Backofen R, Sahinalp SC (2010) Sparsification of RNA structure prediction including pseudoknots. Algorithms Mol Biol 5:39PubMedCentralPubMedGoogle Scholar
  73. 73.
    Dimitrieva S, Bucher P (2012) Practicality and time complexity of a sparsified RNA folding algorithm. J Bioinform Comput Biol 10(2):1241007PubMedGoogle Scholar
  74. 74.
    Xu X, Ji Y, Stormo GD (2007) RNA Sampler: a new sampling based algorithm for common RNA secondary structure prediction and structural alignment. Bioinformatics 23(15):1883–1891PubMedGoogle Scholar
  75. 75.
    Cruz JA, Westhof E (2011) Sequence-based identification of 3D structural modules in RNA with RMDetect. Nat Methods 8(6):513–521PubMedGoogle Scholar
  76. 76.
    Leontis NB, Lescoute A, Westhof E (2006) The building blocks and motifs of RNA architecture. Curr Opin Struct Biol 16: 279–287PubMedGoogle Scholar
  77. 77.
    zu Siederdissen CH, Bernhart SH, Stadler PF, Hofacker IL (2011) A folding algorithm for extended RNA secondary structures. Bioinformatics 27(13):i129–i136Google Scholar
  78. 78.
    Frellsen J, Moltke I, Thiim M, Mardia KV, Ferkinghoff-Borg J, Hamelryck T (2009) A probabilistic model of RNA conformational space. PLoS Comput Biol 5(6):e1000406PubMedCentralPubMedGoogle Scholar
  79. 79.
    Das R, Karanicolas J, Baker D (2010) Atomic accuracy in predicting and designing noncanonical RNA structure. Nat Methods 7(4):291–294PubMedCentralPubMedGoogle Scholar
  80. 80.
    Cruz JA, Blanchet MF, Boniecki M, Bujnicki JM, Chen SJ, Cao S, Das R, Ding F, Dokholyan NV, Flores SC, Huang L, Lavender CA, Lisi V, Major F, Mikolajczak K, Patel DJ, Philips A, Puton T, Santalucia J, Sijenyi F, Hermann T, Rother K, Rother M, Serganov A, Skorupski M, Soltysinski T, Sripakdeevong P, Tuszynska I, Weeks KM, Waldsich C, Wildauer M, Leontis NB, Westhof E (2012) RNA-Puzzles: a CASP-like evaluation of RNA three-dimensional structure prediction. RNA 18(4):610–625PubMedCentralPubMedGoogle Scholar
  81. 81.
    Rose D, Hiller M, Schutt K, Hackermuller J, Backofen R, Stadler PF (2011) Computational discovery of human coding and non-coding transcripts with conserved splice sites. Bioinformatics 27(14):1894–1900PubMedGoogle Scholar
  82. 82.
    Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of RNA alignments. Bioinformatics 25(10):1335–1337PubMedCentralPubMedGoogle Scholar
  83. 83.
    Do CB, Woods DA, Batzoglou S (2006) CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22(14):e90–e98PubMedGoogle Scholar
  84. 84.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCentralPubMedGoogle Scholar
  85. 85.
    Weinberg Z, Ruzzo WL (2006) Sequence-based heuristics for faster annotation of non-coding RNA families. Bioinformatics 22(1):35–39PubMedGoogle Scholar
  86. 86.
    Menzel P, Gorodkin J, Stadler PF (2009) The tedious task of finding homologous noncoding RNA genes. RNA 15(12):2075–2082PubMedCentralPubMedGoogle Scholar
  87. 87.
    Lowe TM, Eddy S (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964PubMedCentralPubMedGoogle Scholar
  88. 88.
    Hertel J, Stadler PF (2006) Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data. Bioinformatics 22(14):197–202Google Scholar
  89. 89.
    Bernhart SH, Tafer H, Muckstein U, Flamm C, Stadler PF, Hofacker IL (2006) Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol 1(1):3PubMedCentralPubMedGoogle Scholar
  90. 90.
    Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microrna/target duplexes. RNA 10:1507–1517PubMedCentralPubMedGoogle Scholar
  91. 91.
    Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24(22):2657–2663PubMedGoogle Scholar
  92. 92.
    Busch A, Richter AS, Backofen R (2008) IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24(24):2849–2856PubMedCentralPubMedGoogle Scholar
  93. 93.
    Chitsaz H, Salari R, Sahinalp SC, Backofen R (2009) A partition function algorithm for interacting nucleic acid strands. Bioinformatics 25(12):i365–i373PubMedCentralPubMedGoogle Scholar
  94. 94.
    Seemann SE, Richter AS, Gorodkin J, Backofen R (2010) Hierarchical folding of multiple sequence alignments for the prediction of structures and RNA-RNA interactions. Algorithms Mol Biol 5:22PubMedCentralPubMedGoogle Scholar
  95. 95.
    Seemann SE, Richter AS, Gesell T, Backofen R, Gorodkin J (2011) PETcofold: predicting conserved interactions and structures of two multiple alignments of RNA sequences. Bioinformatics 27(2):211–219PubMedCentralPubMedGoogle Scholar
  96. 96.
    Li AX, Marz M, Qin J, Reidys CM (2011) RNA-RNA interaction prediction based on multiple sequence alignments. Bioinformatics 27(4):456–463PubMedGoogle Scholar
  97. 97.
    Tafer H, Amman F, Eggenhofer F, Stadler PF, Hofacker IL (2011) Fast accessibility-based prediction of RNA-RNA interactions. Bioinformatics 27(14):1934–1940PubMedGoogle Scholar
  98. 98.
    Poolsap U, Kato Y, Sato K, Akutsu T (2011) Using binding profiles to predict binding sites of target RNAs. J Bioinform Comput Biol 9(6):697–713PubMedGoogle Scholar
  99. 99.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20PubMedGoogle Scholar
  100. 100.
    Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5(1):R1PubMedCentralPubMedGoogle Scholar
  101. 101.
    Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500PubMedGoogle Scholar
  102. 102.
    Kehr S, Bartschat S, Stadler PF, Tafer H (2011) PLEXY: efficient target prediction for box C/D snoRNAs. Bioinformatics 27(2):279–280PubMedGoogle Scholar
  103. 103.
    Tafer H, Kehr S, Hertel J, Hofacker IL, Stadler PF (2010) RNAsnoop: efficient target prediction for H/ACA snoRNAs. Bioinformatics 26(5):610–616PubMedGoogle Scholar
  104. 104.
    Puton T, Kozlowski L, Tuszynska I, Rother K, Bujnicki JM (2011) Computational methods for prediction of protein-RNA interactions. J Struct Biol 179(3):261–268PubMedGoogle Scholar
  105. 105.
    Andersen KL, Nielsen H (2012) Experimental identification and analysis of macronuclear non-coding RNAs from the ciliate Tetrahymena thermophila. Nucleic Acids Res 40(3):1267–1281PubMedCentralPubMedGoogle Scholar
  106. 106.
    Sarver M, Zirbel CL, Stombaugh J, Mokdad A, Leontis NB (2008) FR3D: finding local and composite recurrent structural motifs in RNA 3D structures. J Math Biol 56 (1–2):215–252PubMedCentralPubMedGoogle Scholar
  107. 107.
    Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA 101(19):7287–7292PubMedCentralPubMedGoogle Scholar
  108. 108.
    Barash D (2003) Deleterious mutation prediction in the secondary structure of RNAs. Nucleic Acids Res 31:6578–6584PubMedCentralPubMedGoogle Scholar
  109. 109.
    Sabarinathan R, Tafer H, Seemann SE, Hofacker IL, Stadler PF, Gorodkin J (2013) RNAsnp: efficient detection of local RNA secondary structure changes induced by SNPs Hum Mutat 34(4):546–556Google Scholar
  110. 110.
    Churkin A, Barash D (2006) RNAmute: RNA secondary structure mutation analysis tool. BMC Bioinformatics 7:221Google Scholar
  111. 111.
    Shu W, Bo X, Liu R, Zhao D, Zheng Z, Wang S (2006) RDMAS: a web server for RNA deleterious mutation analysis. BMC Bioinformatics 7:404PubMedCentralPubMedGoogle Scholar
  112. 112.
    Waldispühl J, Devadas S, Berger B, Clote P (2008) Efficient algorithms for probing the RNA mutation landscape. PLoS Comput Biol 4:e1000124PubMedCentralPubMedGoogle Scholar
  113. 113.
    Halvorsen M, Martin JS, Broadaway S, Laederach A (2010) Disease-associated mutations that alter the RNA structural ensemble. PLoS Genet 6:e1001074PubMedCentralPubMedGoogle Scholar
  114. 114.
    Gardner PP, Giegerich R (2004) A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 5:140PubMedCentralPubMedGoogle Scholar
  115. 115.
    Gardner PP, Wilm A, Washietl S (2005) A benchmark of multiple sequence alignment programs upon structural RNAs. Nucleic Acids Res 33(8):2433– 2439PubMedCentralPubMedGoogle Scholar
  116. 116.
    Freyhult EK, Bollback JP, Gardner PP (2007) Exploring genomic dark matter: a critical assessment of the performance of homology search methods on noncoding RNA. Genome Res 17(1):117–125PubMedCentralPubMedGoogle Scholar
  117. 117.
    Ellis JC, Brown JW (2009) The RNase P family. RNA Biol 6(4):362–369PubMedGoogle Scholar
  118. 118.
    Andersen ES, Rosenblad MA, Larsen N, Westergaard JC, Burks J, Wower IK, Wower J, Gorodkin J, Samuelsson T, Zwieb C (2006) The tmRDB and SRPDB resources. Nucleic Acids Res 34(Database issue):D163–D168. http://rnp.uthct.edu/rnp/SRPDB/AboutSRPDB.html Google Scholar
  119. 119.
    Brown JW, Birmingham A, Griffiths PE, Jossinet F, Kachouri-Lafond R, Knight R, Lang BF, Leontis N, Steger G, Stombaugh J, Westhof E (2009) The RNA structure alignment ontology. RNA 15(9):1623–1631PubMedCentralPubMedGoogle Scholar
  120. 120.
    Widmann J, Stombaugh J, McDonald D, Chocholousova J, Gardner P, Iyer MK, Liu Z, Lozupone CA, Quinn J, Smit S, Wikman S, Zaneveld JR, Knight R (2012) RNASTAR: an RNA STructural Alignment Repository that provides insight into the evolution of natural and artificial RNAs. RNA 18(7):1319–1327PubMedCentralPubMedGoogle Scholar
  121. 121.
    Hajiaghayi M, Condon A, Hoos HH (2012) Analysis of energy-based algorithms for RNA secondary structure prediction. BMC Bioinformatics 13:22PubMedCentralPubMedGoogle Scholar
  122. 122.
    Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochem Biophys Acta 405:442–451PubMedGoogle Scholar
  123. 123.
    Gorodkin J, Stricklin SL, Stormo GD (2001) Discovering common stem-loop motifs in unaligned RNA sequences. Nucleic Acids Res 29:2135–2144PubMedCentralPubMedGoogle Scholar
  124. 124.
    Hamada M, Sato K, Asai K (2010) Prediction of RNA secondary structure by maximizing pseudo-expected accuracy. BMC Bioinformatics 11:586PubMedCentralPubMedGoogle Scholar
  125. 125.
    Kato Y, Akutsu T, Seki H (2009) A grammatical approach to RNA-RNA interaction prediction. Pattern Recognit 42:531–538Google Scholar
  126. 126.
    Seemann SE, Gorodkin J, Backofen R (2008) Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments. Nucleic Acids Res 36(20):6355–6362PubMedCentralPubMedGoogle Scholar
  127. 127.
    Gorodkin J (2004) Comparing two K-category assignments by a K-category correlation coefficient. Comput Biol Chem 28 (5–6):367–374PubMedGoogle Scholar
  128. 128.
    Washietl S, Hofacker IL, Lukasser M, Hüttenhofer A, Stadler PF (2005) Genome-wide mapping of conserved RNA secondary structure structures predicts thousands of functional non-coding RNAs in human. Nat Biotechnol 23:1383–1390PubMedGoogle Scholar
  129. 129.
    Uzilov AV, Keegan JM, Mathews DH (2006) Detection of non-coding RNAs on the basis of predicted secondary structure formation free energy change. BMC Bioinformatics 7:173PubMedCentralPubMedGoogle Scholar
  130. 130.
    Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF (2008) RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 9:474PubMedCentralPubMedGoogle Scholar
  131. 131.
    Kuhn M, Szklarczyk D, Franceschini A, von Mering C, Jensen LJ, Bork P (2012) STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res 40(Database issue):D876–D880PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jan Gorodkin
    • 1
  • Ivo L. Hofacker
    • 1
    • 2
  • Walter L. Ruzzo
    • 3
    • 4
    • 5
  1. 1.Center for non-coding RNA in Technology and Health, IKVHUniversity of CopenhagenFrederiksberg CDenmark
  2. 2.Department of Theoretical ChemistryUniversity of ViennaViennaAustria
  3. 3.Department of Computer Science and EngineeringUniversity of WashingtonSeattleUSA
  4. 4.Department of Genome SciencesUniversity of WashingtonSeattleUSA
  5. 5.Fred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations