Analysis of sDMA Modifications of PIWI Proteins

  • Shozo Honda
  • Yoriko Kirino
  • Yohei Kirino
Part of the Methods in Molecular Biology book series (MIMB, volume 1093)


Arginine methylation is an important posttranslational protein modification that modulates protein function for a wide range of biological processes. PIWI proteins, a subclade of the Argonaute family proteins, contain evolutionarily conserved symmetrical dimethylarginines (sDMAs). It has become increasingly apparent that the sDMAs of PIWI proteins serve as binding elements for TUDOR domain-containing proteins and that sDMA-dependent protein interactions play crucial roles in the biogenesis and function of PIWI-interacting RNAs (piRNAs). We describe a method for detecting PIWI sDMAs and purifying PIWI/piRNA complexes using anti-sDMA antibodies.

Key words

PIWI piRNA Arginine methylation Symmetrical dimethylarginine (sDMA) Y12 SYM10 SYM11 



We are grateful to G. Dreyfuss for the Y12 antibody, to S. Katsuma for BmN4 and PIWI expression constructs, and to Z. Mourelatos for support and discussion. This work was supported by the Cedars-Sinai Medical Center Research Fund, Martz Translational Breast Cancer Research Fund, and a Grant for Basic Science Research Project from The Sumitomo Foundation (Y.K.).


  1. 1.
    Bedford MT, Richard S (2005) Arginine methylation an emerging regulator of protein function. Mol Cell 18:263–272PubMedCrossRefGoogle Scholar
  2. 2.
    Krause CD, Yang ZH, Kim YS, Lee JH, Cook JR, Pestka S (2007) Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential. Pharmacol Ther 113:50–87PubMedCrossRefGoogle Scholar
  3. 3.
    Wolf SS (2009) The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci 66:2109–2121PubMedCrossRefGoogle Scholar
  4. 4.
    Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33:1–13PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Blackwell E, Ceman S (2012) Arginine methylation of RNA-binding proteins regulates cell function and differentiation. Mol Reprod Dev 79:163–175PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Yong J, Wan L, Dreyfuss G (2004) Why do cells need an assembly machine for RNA-protein complexes? Trends Cell Biol 14:226–232PubMedCrossRefGoogle Scholar
  7. 7.
    Meister G, Eggert C, Fischer U (2002) SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol 12:472–478PubMedCrossRefGoogle Scholar
  8. 8.
    Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139PubMedCrossRefGoogle Scholar
  10. 10.
    Farazi TA, Juranek SA, Tuschl T (2008) The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135:1201–1214PubMedCrossRefGoogle Scholar
  11. 11.
    Kuramochi-Miyagawa S, Kimura T, Yomogida K, Kuroiwa A, Tadokoro Y, Fujita Y, Sato M, Matsuda Y, Nakano T (2001) Two mouse piwi-related genes: miwi and mili. Mech Dev 108:121–133PubMedCrossRefGoogle Scholar
  12. 12.
    Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2:819–830PubMedCrossRefGoogle Scholar
  13. 13.
    Carmell MA, Girard A, van de Kant HJ, Bourc’his D, Bestor TH, de Rooij DG, Hannon GJ (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12:503–514PubMedCrossRefGoogle Scholar
  14. 14.
    Kawaoka S, Minami K, Katsuma S, Mita K, Shimada T (2008) Developmentally synchronized expression of two Bombyx mori Piwi subfamily genes, SIWI and BmAGO3 in germ-line cells. Biochem Biophys Res Commun 367:755–760PubMedCrossRefGoogle Scholar
  15. 15.
    Kirino Y, Kim N, de Planell-Saguer M, Khandros E, Chiorean S, Klein PS, Rigoutsos I, Jongens TA, Mourelatos Z (2009) Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat Cell Biol 11:652–658PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Reuter M, Chuma S, Tanaka T, Franz T, Stark A, Pillai RS (2009) Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nat Struct Mol Biol 16:639–646PubMedCrossRefGoogle Scholar
  17. 17.
    Vagin VV, Wohlschlegel J, Qu J, Jonsson Z, Huang X, Chuma S, Girard A, Sachidanandam R, Hannon GJ, Aravin AA (2009) Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev 23:1749–1762PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Chen C, Jin J, James DA, Adams-Cioaba MA, Park JG, Guo Y, Tenaglia E, Xu C, Gish G, Min J, Pawson T (2009) Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi. Proc Natl Acad Sci U S A 106:20336–20341PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Nishida KM, Okada TN, Kawamura T, Mituyama T, Kawamura Y, Inagaki S, Huang H, Chen D, Kodama T, Siomi H, Siomi MC (2009) Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J 28:3820–3831PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313:320–324PubMedCrossRefGoogle Scholar
  21. 21.
    Lim AK, Kai T (2007) Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc Natl Acad Sci U S A 104:6714–6719PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Patil VS, Kai T (2010) Repression of retroelements in Drosophila germline via piRNA pathway by the Tudor domain protein Tejas. Curr Biol 20:724–730PubMedCrossRefGoogle Scholar
  23. 23.
    Kirino Y, Vourekas A, Sayed N, de Lima Alves F, Thomson T, Lasko P, Rappsilber J, Jongens TA, Mourelatos Z (2010) Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization. RNA 16:70–78PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Wang J, Saxe JP, Tanaka T, Chuma S, Lin H (2009) Mili interacts with tudor domain-containing protein 1 in regulating spermatogenesis. Curr Biol 19:640–644PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Kojima K, Kuramochi-Miyagawa S, Chuma S, Tanaka T, Nakatsuji N, Kimura T, Nakano T (2009) Associations between PIWI proteins and TDRD1/MTR-1 are critical for integrated subcellular localization in murine male germ cells. Genes Cells 14:1155–1165PubMedCrossRefGoogle Scholar
  26. 26.
    Shoji M, Tanaka T, Hosokawa M, Reuter M, Stark A, Kato Y, Kondoh G, Okawa K, Chujo T, Suzuki T, Hata K, Martin SL, Noce T, Kuramochi-Miyagawa S, Nakano T, Sasaki H, Pillai RS, Nakatsuji N, Chuma S (2009) The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev Cell 17:775–787PubMedCrossRefGoogle Scholar
  27. 27.
    Siomi MC, Mannen T, Siomi H (2010) How does the royal family of Tudor rule the PIWI-interacting RNA pathway? Genes Dev 24:636–646PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Chen C, Nott TJ, Jin J, Pawson T (2011) Deciphering arginine methylation: Tudor tells the tale. Nat Rev Mol Cell Biol 12:629–642PubMedCrossRefGoogle Scholar
  29. 29.
    Lerner EA, Lerner MR, Janeway CA Jr, Steitz JA (1981) Monoclonal antibodies to nucleic acid-containing cellular constituents: probes for molecular biology and autoimmune disease. Proc Natl Acad Sci U S A 78:2737–2741PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Pisetsky DS, Lerner EA (1982) Idiotypic analysis of a monoclonal anti-Sm antibody. J Immunol 129:1489–1492PubMedGoogle Scholar
  31. 31.
    Brahms H, Raymackers J, Union A, de Keyser F, Meheus L, Luhrmann R (2000) The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. J Biol Chem 275:17122–17129PubMedCrossRefGoogle Scholar
  32. 32.
    Boisvert FM, Cote J, Boulanger MC, Cleroux P, Bachand F, Autexier C, Richard S (2002) Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing. J Cell Biol 159:957–969PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Boisvert FM, Cote J, Boulanger MC, Richard S (2003) A proteomic analysis of arginine-methylated protein complexes. Mol Cell Proteomics 2:1319–1330PubMedCrossRefGoogle Scholar
  34. 34.
    Kawaoka S, Hayashi N, Suzuki Y, Abe H, Sugano S, Tomari Y, Shimada T, Katsuma S (2009) The Bombyx ovary-derived cell line endogenously expresses PIWI/PIWI-interacting RNA complexes. RNA 15:1258–1264PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Zhang Z, Zhang S, Zhang Y, Wang X, Li D, Li Q, Yue M, Zhang YE, Xu Y, Xue Y, Chong K, Bao S (2011) Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. Plant Cell 23:396–411PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Shozo Honda
    • 1
  • Yoriko Kirino
    • 1
  • Yohei Kirino
    • 2
  1. 1.Department of Biomedical Sciences, Cedars-Sinai Medical CenterSamuel Oschin Comprehensive Cancer InstituteLos AngelesUSA
  2. 2.Computational Medicine Center, Department of Biochemistry and Molecular BiologyThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations