High-Throughput SAXS for the Characterization of Biomolecules in Solution: A Practical Approach

  • Kevin N. Dyer
  • Michal Hammel
  • Robert P. Rambo
  • Susan E. Tsutakawa
  • Ivan Rodic
  • Scott Classen
  • John A. Tainer
  • Greg L. Hura
Part of the Methods in Molecular Biology book series (MIMB, volume 1091)


The recent innovation of collecting X-ray scattering from solutions containing purified macromolecules in high-throughput has yet to be truly exploited by the biological community. Yet, this capability is becoming critical given that the growth of sequence and genomics data is significantly outpacing structural biology results. Given the huge mismatch in information growth rates between sequence and structural methods, their combined high-throughput and high success rate make high-throughput small angle X-ray scattering (HT-SAXS) analyses increasingly valuable. HT-SAXS connects sequence as well as NMR and crystallographic results to biological outcomes by defining the flexible and dynamic complexes controlling cell biology. Commonly falling under the umbrella of bio-SAXS, HT-SAXS data collection pipelines have or are being developed at most synchrotrons. How investigators practically get their biomolecules of interest into these pipelines, balance sample requirements and manage HT-SAXS data output format varies from facility to facility. While these features are unlikely to be standardized across synchrotron beamlines, a detailed description of HT-SAXS issues for one pipeline provides investigators with a practical guide to the general procedures they will encounter. One of the longest running and generally accessible HT-SAXS endstations is the SIBYLS beamline at the Advanced Light Source in Berkeley CA. Here we describe the current state of the SIBYLS HT-SAXS pipeline, what is necessary for investigators to integrate into it, the output format and a summary of results from 2 years of operation. Assessment of accumulated data informs issues of concentration, background, buffers, sample handling, sample shipping, homogeneity requirements, error sources, aggregation, radiation sensitivity, interpretation, and flags for concern. By quantitatively examining success and failures as a function of sample and data characteristics, we define practical concerns, considerations, and concepts for optimally applying HT-SAXS techniques to biological samples.

Key words

High-throughput SAXS Conformation Structure Structural genomics Macromolecules 



This work and the operation of the SIBYLS beamline has been supported by the Integrated Diffraction Analysis Technologies (IDAT) program, the DOE Office of Biological and Environmental Research plus the National Institutes of Health grant MINOS (Macromolecular Insights on Nucleic Acids Optimized by Scattering) GM105404.


  1. 1.
    Koch MHJ (2010) SAXS instrumentation for synchrotron radiation then and now. J Phys Conf Ser 247:012001Google Scholar
  2. 2.
    Fukuchi S, Hosoda K, Homma K et al (2011) Binary classification of protein molecules into intrinsically disordered and ordered segments. BMC Struct Biol 11:29Google Scholar
  3. 3.
    Rambo RP, Tainer JA (2010) Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle X-ray scattering. Curr Opin Struct Biol 20:128–137CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hammel M, Yu Y, Fang S et al (2010) XLF regulates filament architecture of the XRCC4.ligase IV complex. Structure 18:1431–1442CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hammel M, Rey M, Mani RS et al (2011) XRCC4 protein interactions with XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. J Biol Chem 286:32638–32650CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Shin DS, Didonato M, Barondeau DP et al (2009) Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: structures, stability, mechanism, and insights into amyotrophic lateral sclerosis. J Mol Biol 385:1534–1555CrossRefPubMedGoogle Scholar
  7. 7.
    Yamagata A, Tainer JA (2007) Hexameric structures of the archaeal secretion ATPase GspE and implications for a universal secretion mechanism. EMBO J 26:878–890CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nishimura N, Hitomi K, Arvai AS et al (2009) Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326:1373–1379CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chacon P, Moran F, Diaz JF et al (1998) Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm. Biophys J 74:2760–2775CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Petoukhov MV, Franke D, Shkumatov AV et al (2012) New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr 45:342–350CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Pelikan M, Hura GL, Hammel M (2009) Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen Physiol Biophys 28:174–189CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bernado P, Mylonas E, Petoukhov MV et al (2007) Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129:5656–5664CrossRefPubMedGoogle Scholar
  13. 13.
    Grishaev A, Wu J, Trewhella J et al (2005) Refinement of multidomain protein structures by combination of solution small-angle X-ray scattering and NMR data. J Am Chem Soc 127:16621–16628CrossRefPubMedGoogle Scholar
  14. 14.
    Schneidman-Duhovny D, Hammel M, Sali A (2010) FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res 38:W540–W544CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rambo RP, Tainer JA (2011) Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers 95:559–571CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Getzoff ED, Tainer JA, Lerner RA et al (1988) The chemistry and mechanism of antibody binding to protein antigens. Adv Immunol 43:1–98CrossRefPubMedGoogle Scholar
  17. 17.
    Tainer JA, Getzoff ED, Alexander H et al (1984) The reactivity of anti-peptide antibodies is a function of the atomic mobility of sites in a protein. Nature 312:127–134CrossRefPubMedGoogle Scholar
  18. 18.
    Tsutakawa SE, Hura GL, Frankel KA et al (2007) Structural analysis of flexible proteins in solution by small angle X-ray scattering combined with crystallography. J Struct Biol 158:214–223CrossRefPubMedGoogle Scholar
  19. 19.
    Hura GL, Budworth H, Dyer KN et al (2013) Comprehensive macromolecular conformations mapped by quantitative SAXS analysis. Nat Methods 10:453–454CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Martel A, Liu P, Weiss TM et al (2012) An integrated high-throughput data acquisition system for biological solution X-ray scattering studies. J Synchrotron Radiat 19:431–434CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    David G, Perez J (2009) Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline. J Appl Crystallogr 42:892–900CrossRefGoogle Scholar
  22. 22.
    Franke D, Kikhney AG, Svergun DI (2012) Automated acquisition and analysis of small angle X-ray scattering data. Nucl Instrum Methods A 689:52–59CrossRefGoogle Scholar
  23. 23.
    Nielsen SS, Moller M, Gillilan RE (2012) High-throughput biological small-angle X-ray scattering with a robotically loaded capillary cell. J Appl Crystallogr 45:213–223CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hura GL, Menon AL, Hammel M et al (2009) Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 6:606–U683CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Classen S, Rodic I, Holton J et al (2010) Software for the high-throughput collection of SAXS data using an enhanced Blu-Ice/DCS control system. J Synchrotron Radiat 17:774–781CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Williams RS, Dodson GE, Limbo O et al (2009) Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139:87–99CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Christie JM, Arvai AS, Baxter KJ et al (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492–1496CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chao LH, Stratton MM, Lee IH et al (2011) A mechanism for tunable autoinhibition in the structure of a human Ca2+/calmodulin-dependent kinase II holoenzyme. Cell 146:732–745CrossRefGoogle Scholar
  29. 29.
    Dueber EC, Schoeffler AJ, Lingel A et al (2011) Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination. Science 334:376–380CrossRefPubMedGoogle Scholar
  30. 30.
    Putnam CD, Hammel M, Hura GL et al (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40:191–285CrossRefPubMedGoogle Scholar
  31. 31.
    Petoukhov MV, Svergun DI (2007) Analysis of X-ray and neutron scattering from biomacromolecular solutions. Curr Opin Struc Biol 17:562–571CrossRefGoogle Scholar
  32. 32.
    Rambo RP, Tainer JA (2013) Super-resolution in solution X-ray scattering and its applications to structural systems biology. Ann Rev Biophys 42:415–441CrossRefGoogle Scholar
  33. 33.
    Classen S, Hura GL, Holton JM et al (2013) Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source. J Appl Crystallogr 46:1–13CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jacques DA, Guss JM, Svergun DI et al (2012) Publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution. Acta Crystallogr D 68:620–626CrossRefPubMedGoogle Scholar
  35. 35.
    Rambo RP, Tainer JA (2010) Improving small-angle X-ray scattering data for structural analyses of the RNA world. RNA 16:638–646CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rambo RP, Tainer JA (2013) Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496:477–481CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Kevin N. Dyer
    • 1
  • Michal Hammel
    • 1
  • Robert P. Rambo
    • 2
  • Susan E. Tsutakawa
    • 2
  • Ivan Rodic
    • 1
  • Scott Classen
    • 1
  • John A. Tainer
    • 2
  • Greg L. Hura
    • 1
  1. 1.Physcial Bioscience DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Life Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations