Flux Balance Analysis as an Alternative Method to Estimate Fluxes Without Labeling

  • Eva Grafahrend-Belau
  • Astrid Junker
  • Falk Schreiber
  • Björn H. Junker
Part of the Methods in Molecular Biology book series (MIMB, volume 1090)


The analysis of plant metabolic networks essentially contributes to the understanding of the efficiency of plant systems in terms of their biotechnological usage. Metabolic fluxes are determined by biochemical parameters such as metabolite concentrations as well as enzyme properties and activities, which in turn are the result of various regulatory events at various levels between control of transcription and posttranslational regulation of enzyme protein activity. Thus, knowledge about metabolic fluxes on a large scale provides an integrated view on the functional state of a metabolically active cell, organ, or system. In this chapter, we introduce flux balance analysis as a constraint-based method for the prediction of optimal metabolic fluxes in a given metabolic network. Furthermore, we provide a step-by-step protocol for metabolic network reconstruction and constraint-based analysis using the COBRA Toolbox.

Key words

Flux balance analysis Metabolic network reconstruction Matlab COBRA toolbox 


  1. 1.
    Stitt M, Sulpice R, Keurentjes J (2010) Metabolic networks: how to identify key components in the regulation of metabolism and growth. Plant Physiol 152:428–444PubMedCrossRefGoogle Scholar
  2. 2.
    Sweetlove LJ, Fell D, Fernie AR (2008) Getting to grips with the plant metabolic network. Biochem J 409:27–41PubMedCrossRefGoogle Scholar
  3. 3.
    Kruger NJ, Ratcliffe RG (2012) Pathways and fluxes: exploring the plant metabolic network. J Exp Bot 63:2243–2246PubMedCrossRefGoogle Scholar
  4. 4.
    Edwards JS, Ramakrishna R, Schilling CH, Palsson BO (1999) Metabolic Flux Balance Analysis. In: Lee SY, Papoutsakis ET (eds) Metabolic engineering. Marcel Dekker, New York, pp 13–57Google Scholar
  5. 5.
    Poolman MG, Miguet L, Sweetlove LJ, Fell DA (2009) A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol 151:1570–1581PubMedCrossRefGoogle Scholar
  6. 6.
    Williams TC, Poolman MG, Howden AJ et al (2010) A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions. Plant Physiol 154:311–323PubMedCrossRefGoogle Scholar
  7. 7.
    de Oliveira Dal'Molin CG, Quek LE, Palfreyman RW et al (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152:579–589PubMedCrossRefGoogle Scholar
  8. 8.
    Radrich K, Tsuruoka Y, Dobson P et al (2010) Integration of metabolic databases for the reconstruction of genome-scale metabolic networks. BMC Systems Biol 4:114CrossRefGoogle Scholar
  9. 9.
    Kleessen S, Araujo WL, Fernie AR, Nikoloski Z (2012) Model-based confirmation of alternative substrates of mitochondrial electron transport chain. J Biol Chem 287:11122–11131PubMedCrossRefGoogle Scholar
  10. 10.
    Grafahrend-Belau E, Schreiber F, Koschutzki D, Junker BH (2009) Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiol 149:585–598PubMedCrossRefGoogle Scholar
  11. 11.
    Rolletschek H, Melkus G, Grafahrend-Belau E et al (2011) Combined noninvasive imaging and modeling approaches reveal metabolic compartmentation in the barley endosperm. Plant Cell 23:3041–3054PubMedCrossRefGoogle Scholar
  12. 12.
    Grafahrend-Belau E, Junker A, Eschenröder A, Müller J, Schreiber F, Junker BH (2013) Multiscale metabolic modeling: dynamic flux balance analysis on a whole plant scale. Plant Physiol [Epub ahead of print]Google Scholar
  13. 13.
    Dal'Molin CG, Quek LE, Palfreyman RW et al (2010) C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol 154:1871–1885PubMedCrossRefGoogle Scholar
  14. 14.
    Saha R, Suthers PF, Maranas CD (2011) Zea mays iRS1563: a comprehensive genome-scale metabolic reconstruction of maize metabolism. PLoS One 6:e21784PubMedCrossRefGoogle Scholar
  15. 15.
    Schwender J, Hay JO (2012) Predictive modeling of biomass component tradeoffs in Brassica napus developing oilseeds based on in silico manipulation of storage metabolism. Plant Physiol 160:1218–1236PubMedCrossRefGoogle Scholar
  16. 16.
    Boyle NR, Morgan JA (2009) Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol 3:4PubMedCrossRefGoogle Scholar
  17. 17.
    Cogne G, Rugen M, Bockmayr A et al (2011) A model-based method for investigating bioenergetic processes in autotrophically growing eukaryotic microalgae: application to the green algae Chlamydomonas reinhardtii. Biotechnol Prog 27:631–640PubMedCrossRefGoogle Scholar
  18. 18.
    Dal‘Molin CG, Quek LE, Palfreyman RW, Nielsen LK (2011) AlgaGEM—a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome. BMC Genomics 12(Suppl 4):S5PubMedCrossRefGoogle Scholar
  19. 19.
    Knoop H, Zilliges Y, Lockau W, Steuer R (2010) The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth. Plant Physiol 154:410–422PubMedCrossRefGoogle Scholar
  20. 20.
    Montagud A, Navarro E, Fernandez de Cordoba P, Urchueguia JF, Patil KR (2010) Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. BMC Syst Biol 4:156PubMedCrossRefGoogle Scholar
  21. 21.
    Becker SA, Feist AM, Mo ML et al (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox. Nat Protoc 2:727–738PubMedCrossRefGoogle Scholar
  22. 22.
    Schellenberger J, Que R, Fleming RM et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat protoc 6:1290–1307PubMedCrossRefGoogle Scholar
  23. 23.
    Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121PubMedCrossRefGoogle Scholar
  24. 24.
    Edwards JS, Ramakrishna R, Palsson BO (2002) Characterizing the metabolic phenotype: a phenotype phase plane analysis. Biotechnol Bioeng 77:27–36PubMedCrossRefGoogle Scholar
  25. 25.
    Amthor JS (2010) From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. New Phytol 188:939–959PubMedCrossRefGoogle Scholar
  26. 26.
    Amthor JS (2000) The McCree±de Wit±Penning de Vries±Thornley respiration paradigms: 30 years later. Ann Bot 86:1–20CrossRefGoogle Scholar
  27. 27.
    Klamt S, Stelling J, Ginkel M, Gilles ED (2003) FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics 19:261–269PubMedCrossRefGoogle Scholar
  28. 28.
    Grafahrend-Belau E, Klukas C, Junker BH, Schreiber F (2009) FBA-SimVis: interactive visualization of constraint-based metabolic models. Bioinformatics 25:2755–2757PubMedCrossRefGoogle Scholar
  29. 29.
    Wright J, Wagner A (2008) The systems biology research tool: evolvable open-source software. BMC Syst Biol 2:55PubMedCrossRefGoogle Scholar
  30. 30.
    Urbanczik R (2006) SNA—a toolbox for the stoichiometric analysis of metabolic networks. BMC Bioinformatics 7:129PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Eva Grafahrend-Belau
    • 1
  • Astrid Junker
    • 1
  • Falk Schreiber
    • 1
    • 2
    • 3
  • Björn H. Junker
    • 4
  1. 1.Leibniz-Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK)GaterslebenGermany
  2. 2.Institute of Computer ScienceMartin Luther University Halle-WittenbergHalleGermany
  3. 3.Clayton School of Information TechnologyMonash UniversityClaytonAustralia
  4. 4.Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations