Advertisement

Investigating Human T Cell Lymphotropic Retrovirus (HTLV) Tax Function with Molecular and Immunophenotypic Techniques

  • Greta Forlani
  • Roberto S. Accolla
  • Giovanna Tosi
Part of the Methods in Molecular Biology book series (MIMB, volume 1087)

Abstract

Human T cell Lymphotropic Viruses 1 and 2 (HTLV-1 and HTLV-2) are the first described human retroviruses. HTLV-1 is the causative agent of an aggressive malignancy of CD4+ T lymphocytes named adult T-cell leukemia/lymphoma (ATLL) and of a chronic neurological disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-2 shares many similarities with HTLV-1, but displays lower or absent association to diseases. Among the proteins encoded by HTLVs, the viral transactivator Tax exerts an essential role in viral transcription as well as in cell transformation. Different experimental methods to study Tax activity on HTLV-LTR promoter and Tax subcellular distribution are described. Emphasis is given to the functional and physical interaction between Tax-1/Tax-2 and cellular cofactors which may have an impact on the infectivity process of the HTLVs and on the capacity of cell transformation.

Key words

Dual luciferase reporter assay Co-immunoprecipitation Immunoblot Immuno-fluorescence Confocal microscopy 

Notes

Acknowledgements

This work was supported by the following grants to RSA: Fondazione Cariplo 2008–2230 “Cellular and molecular basis of human retroviral-dependent pathology”; A.I.R.C IG 8862 “New strategies of tumor vaccination and immunotherapy based on optimized triggering of anti-tumor CD4+ T cells”; MIUR-PRIN project 2008-WXF7KK “New strategies of immunointervention against tumors”; University of Insubria “FAR 2009” and “FAR 2010” to GT.

References

  1. 1.
    Yasunaga J, Sakai T, Nosaka K et al (2001) Impaired production of naive T ymphocytes in human T-cell leukemia virus type I-infected individuals: its implications in the immunodeficient state. Blood 97:3177–3183CrossRefGoogle Scholar
  2. 2.
    Casoli C, Cimarelli A, Bertazzoni U (1995) Cellular tropism of human T-cell leukemia virus type II is enlarged to B lymphocytes in patients with high proviral load. Virology 206:1126–1128CrossRefPubMedGoogle Scholar
  3. 3.
    Jones KS, Petrow-Sadowski C, Huang YK et al (2008) Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells. Nat Med 14:429–436CrossRefPubMedGoogle Scholar
  4. 4.
    Kinoshita K, Amagasaki T, Hino S et al (1987) Milk-borne transmission of HTLV-I from carrier mothers to their children. Jpn J Cancer Res 78:674–680PubMedGoogle Scholar
  5. 5.
    Okamoto T, Ohno Y, Tsugane S et al (1989) Multi-step carcinogenesis model for adult T-cell leukemia. Jpn J Cancer Res 80:191–195CrossRefPubMedGoogle Scholar
  6. 6.
    Bogenberger JM, Laybourn PJ (2008) Human T lymphotropic virus type 1 protein Tax reduces histone levels. Retrovirology 5:9PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Albrecht B, Lairmore MD (2002) Critical role of human T-lymphotropic virus type 1 accessory proteins in viral replication and pathogenesis. Microbiol Mol Biol Rev 66:396–406PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Matsuoka M, Jeang KT (2007) Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer 7:270–280CrossRefPubMedGoogle Scholar
  9. 9.
    Grassmann R, Aboud M, Jeang KT (2005) Molecular mechanisms of cellular transformation by HTLV-1 Tax. Oncogene 24:5976–5985CrossRefPubMedGoogle Scholar
  10. 10.
    Jeang KT, Giam CZ, Majone F (2004) Life, death, and tax: role of HTLV-I oncoprotein in genetic instability and cellular transformation. J Biol Chem 279:31991–31994CrossRefPubMedGoogle Scholar
  11. 11.
    Takeda S, Maeda M, Morikawa S et al (2004) Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells. Int J Cancer 109:559–567CrossRefPubMedGoogle Scholar
  12. 12.
    Felber BK, Paskalis H, Kleinman-Ewing C et al (1985) The pX protein of HTLV-I is a transcriptional activator of its long terminal repeats. Science 229:675–679CrossRefPubMedGoogle Scholar
  13. 13.
    Jeang KT, Boros I, Brady J et al (1988) Characterization of cellular factors that interact with the human T-cell leukemia virus type I p40x-responsive 21-base-pair sequence. J Virol 62:4499–4509PubMedCentralPubMedGoogle Scholar
  14. 14.
    Brady J, Jeang KT, Duvall J et al (1987) Identification of p40x-responsive regulatory sequences within the human T-cell leukemia virus type I long terminal repeat. J Virol 61:2175–2181PubMedCentralPubMedGoogle Scholar
  15. 15.
    Boxus M et al (2008) The HTLV-1 interactome. Retrovirology 5:76–99PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Kwok RP, Laurance ME, Lundblad JR et al (1996) Control of cAMP-regulated enhancers by the viral transactivator Tax through CREB and the co-activator CBP. Nature 380:642–646CrossRefPubMedGoogle Scholar
  17. 17.
    Okada M, Jeang KT (2002) Differential requirements for activation of integrated and transiently transfected human T-cell leukemia virus type 1 long terminal repeat. J Virol 76:12564–12573PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Clerc I, Polakowski N, André-Arpin C et al (2008) An interaction between the human T cell leukemia virus type 1 basic leucine zipper factor (HBZ) and the KIX domain of p300/CBP contributes to the down-regulation of tax-dependent viral transcription by HBZ. J Biol Chem 283:23903–23913PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Casoli C, De Lerma Barbaro A, Pilotti E et al (2004) The MHC class II transcriptional activator (CIITA) inhibits HTLV-2 viral replication by blocking the function of the viral transactivator Tax-2. Blood 103:995–1001CrossRefPubMedGoogle Scholar
  20. 20.
    Tosi G, Pilotti E, Mortara L et al (2006) Inhibition of human T cell leukemia virus type 2 replication by the suppressive action of class II transactivator and nuclear factor Y. Proc Natl Acad Sci USA 103(34):12861–12866PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Orlandi C, Forlani G, Tosi G et al (2011) Molecular and cellular correlates of the CIITA-mediated inhibition of HTLV-2 Tax-2 transactivator function resulting in loss of viral replication. J Transl Med 9:106PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Tosi G, Forlani G, Andresen V et al (2011) The MHC-II transactivator CIITA, a viral restriction factor targeting human T-cell lymphotropic virus type 1 Tax-1 function and inhibiting viral replication. J Virol 85:10719–10729PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Turci M, Romanelli MG, Lorenzi P et al (2006) Localization of human T-cell lymphotropic virus type II Tax protein is dependent upon a nuclear localization determinant in the N-terminal region. Gene 365:119–124CrossRefPubMedGoogle Scholar
  24. 24.
    Turci M, Lodewick J, Righi P et al (2009) HTLV-2B Tax oncoprotein is modified by ubiquitination and sumoylation and displays intracellular localization similar to its homologue HTLV-1 Tax. Virology 386:6–11CrossRefPubMedGoogle Scholar
  25. 25.
    Alefantis T, Barmak K, Harhaj EW et al (2003) Characterization of a nuclear export signal within the human T cell leukemia virus type I transactivator protein Tax. J Biol Chem 278:21814–21822CrossRefPubMedGoogle Scholar
  26. 26.
    Semmes OJ, Majone F, Cantemir C et al (1996) HTLV-I and HTLV-II Tax: differences in induction of micronuclei in cells and transcriptional activation of viral LTRs. Virology 217:373–379CrossRefPubMedGoogle Scholar
  27. 27.
    Burton M, Upadhyaya CD, Maier B et al (2000) Human T-cell leukemia virus type 1 Tax shuttles between functionally discrete subcellular targets. J Virol 74:2351–2364PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Cheng H, Cenciarelli C, Shao Z et al (2001) Human T cell leukemia virus type 1 Tax associates with a molecular chaperone complex containing hTid-1 and Hsp70. Curr Biol 11:1771–1775CrossRefPubMedGoogle Scholar
  29. 29.
    Meertens L, Chevalier S, Weil R et al (2004) A 10-amino acid domain within human T-cell leukemia virus type 1 and type 2 tax protein sequences is responsible for their divergent subcellular distribution. J Biol Chem 279:43307–43320CrossRefPubMedGoogle Scholar
  30. 30.
    Paskalis H, Felber BK, Pavlakis GN (1986) Cis-acting sequences responsible for the transcriptional activation of human T-cell leukemia virus type 1 constitute a conditional enhancer. Proc Natl Acad Sci USA 83:6558–6562PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Greta Forlani
    • 1
  • Roberto S. Accolla
    • 1
  • Giovanna Tosi
    • 1
  1. 1.Department of Experimental Medicine, School of Medicine and SurgeryUniversity of InsubriaVareseItaly

Personalised recommendations