RNA Folding pp 53-77 | Cite as

The Mutate-and-Map Protocol for Inferring Base Pairs in Structured RNA

  • Pablo Cordero
  • Wipapat Kladwang
  • Christopher C. VanLang
  • Rhiju Das
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1086)

Abstract

Chemical mapping is a widespread technique for structural analysis of nucleic acids in which a molecule’s reactivity to different probes is quantified at single nucleotide resolution and used to constrain structural modeling. This experimental framework has been extensively revisited in the past decade with new strategies for high-throughput readouts, chemical modification, and rapid data analysis. Recently, we have coupled the technique to high-throughput mutagenesis. Point mutations of a base paired nucleotide can lead to exposure of not only that nucleotide but also its interaction partner. Systematically carrying out the mutation and mapping for the entire system gives an experimental approximation of the molecule’s “contact map.” Here, we give our in-house protocol for this “mutate-and-map” (M2) strategy, based on 96-well capillary electrophoresis, and we provide practical tips on interpreting the data to infer nucleic acid structure.

Key words

RNA structure Chemical mapping Capillary sequencing Systematic mutation 

Notes

Acknowledgements

We thank B. Alford, F. Ortega, A. Becka, T. Mann, and S. Tian for comments on the manuscript. This work is supported by the Burroughs-Wellcome Foundation (CASI to R.D.), a CONACyT fellowship (to P.C.), and the National Institutes of Health (T32 HG000044 to C.C.V. and R01 GM102519 to R.D.).

References

  1. 1.
    Mandal M, Lee M, Barrick JE et al (2004) A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306:275–279PubMedCrossRefGoogle Scholar
  2. 2.
    Kulshina N, Baird NJ, Ferre-D’Amare AR (2009) Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nat Struct Mol Biol 16:1212–1217PubMedCrossRefGoogle Scholar
  3. 3.
    Gesteland RF, Cech TR, Atkins JF (2006) The RNA World, 3rd edn. CSHL Press, Cold Spring HarborGoogle Scholar
  4. 4.
    Leontis NB, Westhof E (1998) The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure. RNA 4:1134–1153PubMedCrossRefGoogle Scholar
  5. 5.
    Staley JP, Guthrie C (1998) Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92:315–326PubMedCrossRefGoogle Scholar
  6. 6.
    Lukavsky PJ, Kim I, Otto GA et al (2003) Structure of HCV IRES domain II determined by NMR. Nat Struct Biol 10:1033–1038PubMedCrossRefGoogle Scholar
  7. 7.
    Brostoff SW, Ingram VM (1967) Chemical modification of yeast alanine-tRNA with a radioactive carbodiimide. Science 158:666–669PubMedCrossRefGoogle Scholar
  8. 8.
    Moazed D, Stern S, Noller HF (1986) Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J Mol Biol 187:399–416PubMedCrossRefGoogle Scholar
  9. 9.
    Cordero P, Kladwang W, VanLang CC et al (2012) Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference. Biochemistry 51:7037–7039PubMedCrossRefGoogle Scholar
  10. 10.
    Wilkinson KA, Merino EJ, Weeks KM (2006) Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protoc 1:1610–1616PubMedCrossRefGoogle Scholar
  11. 11.
    Regulski EE, Breaker RR (2008) In-line probing analysis of riboswitches. Methods Mol Biol 419:53–67PubMedCrossRefGoogle Scholar
  12. 12.
    Lucks JB, Mortimer SA, Trapnell C et al (2011) Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci USA 108:11063–11068PubMedCrossRefGoogle Scholar
  13. 13.
    Sood VD, Beattie TL, Collins RA (1998) Identification of phosphate groups involved in metal binding and tertiary interactions in the core of the Neurospora VS ribozyme. J Mol Biol 282:741–750PubMedCrossRefGoogle Scholar
  14. 14.
    Rhee Y, Valentine MR, Termini J (1995) Oxidative base damage in RNA detected by reverse transcriptase. Nucleic Acids Res 23:3275–3282PubMedCrossRefGoogle Scholar
  15. 15.
    Chow CS, Cunningham PR, Lee K et al (2002) Photoinduced cleavage by a rhodium complex at G.U mismatches and exposed guanines in large and small RNAs. Biochimie 84:859–868PubMedCrossRefGoogle Scholar
  16. 16.
    Kertesz M, Wan Y, Mazor E et al (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467:103–107PubMedCrossRefGoogle Scholar
  17. 17.
    Underwood JG, Uzilov AV, Katzman S et al (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods 7:995–1001PubMedCrossRefGoogle Scholar
  18. 18.
    Kladwang W, Das R (2010) A mutate-and-map strategy for inferring base pairs in structured nucleic acids: proof of concept on a DNA/RNA helix. Biochemistry 49:7414–7416PubMedCrossRefGoogle Scholar
  19. 19.
    Wells SE, Hughes JM, Igel AH et al (2000) Use of dimethyl sulfate to probe RNA structure in vivo. Methods Enzymol 318:479–493PubMedCrossRefGoogle Scholar
  20. 20.
    Tijerina P, Mohr S, Russell R (2007) DMS footprinting of structured RNAs and RNA-protein complexes. Nat Protoc 2:2608–2623PubMedCrossRefGoogle Scholar
  21. 21.
    Spitale RC, Crisalli P, Flynn RA et al (2013) RNA SHAPE analysis in living cells. Nat Chem Biol 9:18–20PubMedCrossRefGoogle Scholar
  22. 22.
    Kladwang W, VanLang CC, Cordero P et al (2011) Understanding the errors of SHAPE-directed RNA structure modeling. Biochemistry 50:8049–8056PubMedCrossRefGoogle Scholar
  23. 23.
    Washietl S, Hofacker IL, Stadler PF et al (2012) RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction. Nucleic Acids Res 40:4261–4272PubMedCrossRefGoogle Scholar
  24. 24.
    Kladwang W, Cordero P, Das R (2011) A mutate-and-map strategy accurately infers the base pairs of a 35-nucleotide model RNA. RNA 17:522–534PubMedCrossRefGoogle Scholar
  25. 25.
    Kladwang W, VanLang CC, Cordero P et al (2011) A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nat Chem 3:954–962PubMedCrossRefGoogle Scholar
  26. 26.
    Mathews DH, Disney MD, Childs JL et al (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA 101:7287–7292PubMedCrossRefGoogle Scholar
  27. 27.
    Mortimer SA, Weeks KM (2007) A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J Am Chem Soc 129:4144–4145PubMedCrossRefGoogle Scholar
  28. 28.
    Yoon S, Kim J, Hum J et al (2011) HiTRACE: high-throughput robust analysis for capillary electrophoresis. Bioinformatics 27:1798–1805PubMedCrossRefGoogle Scholar
  29. 29.
    Vasa SM, Guex N, Wilkinson KA et al (2008) ShapeFinder: a software system for high-throughput quantitative analysis of nucleic acid reactivity information resolved by capillary electrophoresis. RNA 14:1979–1990PubMedCrossRefGoogle Scholar
  30. 30.
    Mitra S, Shcherbakova IV, Altman RB et al (2008) High-throughput single-nucleotide structural mapping by capillary automated footprinting analysis. Nucleic Acids Res 36:e63PubMedCrossRefGoogle Scholar
  31. 31.
    Cordero P, Lucks JB, Das R (2012) An RNA Mapping DataBase for curating RNA structure mapping experiments. Bioinformatics 28:3006–3008PubMedCrossRefGoogle Scholar
  32. 32.
    Rocca-Serra P, Bellaousov S, Birmingham A et al (2011) Sharing and archiving nucleic acid structure mapping data. RNA 17:1204–1212PubMedCrossRefGoogle Scholar
  33. 33.
    Rydzanicz R, Zhao XS, Johnson PE (2005) Assembly PCR oligo maker: a tool for designing oligodeoxynucleotides for constructing long DNA molecules for RNA production. Nucleic Acids Res 33:W521–W525PubMedCrossRefGoogle Scholar
  34. 34.
    Thachuk C, Condon A (2007) On the design of oligos for gene synthesis. Paper presented at the IEEE 7th international symposium on bioinformatics and bioengineering, Cambridge, Boston, USA, pp 123–130. IEEEGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Pablo Cordero
    • 1
  • Wipapat Kladwang
    • 2
  • Christopher C. VanLang
    • 3
  • Rhiju Das
    • 2
    • 4
  1. 1.Department of Biomedical InformaticsStanford UniversityStanfordUSA
  2. 2.Department of BiochemistryStanford UniversityStanfordUSA
  3. 3.Department of Chemical EngineeringStanford UniversityStanfordUSA
  4. 4.Department of PhysicsStanford UniversityStanfordUSA

Personalised recommendations