Elementary Flux Modes, Flux Balance Analysis, and Their Application to Plant Metabolism

  • Katrin Lotz
  • Anja Hartmann
  • Eva Grafahrend-Belau
  • Falk Schreiber
  • Björn H. Junker
Part of the Methods in Molecular Biology book series (MIMB, volume 1083)


In recent years the number of sequenced and annotated plant genomes has increased significantly, and novel approaches are required to retrieve valuable information from these data sets. The field of systems biology has accelerated the simulation and prediction of phenotypes derived from specific genotypic modifications under defined growth conditions. The biochemical potential of a cell from a specific plant tissue (e.g., seed endosperm) can be derived from its genome in the form of a mathematical model by the method of metabolic network reconstruction. This model can be further analyzed by studying its network properties, analyzing feasible pathway routes through the network, or simulating possible flux distributions of the network . Here, we describe two approaches for identification of all feasible routes through the network (elementary mode analysis) and for simulation of flux distribution in the network based on plant physiological uptake and excretion rates (flux balance analysis).

Key words

Metabolic modeling Constraint-based modeling Primary plant metabolism Metabolic reconstruction Metabolic flux analysis Elementary flux modes Flux balance analysis 


  1. 1.
    Hanson AD, Shanks JV (2002) Plant metabolic engineering – entering the S curve. Metab Eng 4:1–2CrossRefGoogle Scholar
  2. 2.
    Wiechert W (2001) Minireview: 13C metabolic flux analysis. Metab Eng 3:195–206PubMedCrossRefGoogle Scholar
  3. 3.
    Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17(2):53–60PubMedCrossRefGoogle Scholar
  4. 4.
    Edwards JS, Ramakrishna R, Schilling CH, Palsson BØ (1999) Metabolic flux balance analysis. In: Lee SY, Papoutsakis ET (eds) Metabolic engineering. Marcel Dekker, New York, pp 13–57Google Scholar
  5. 5.
    Grafahrend-Belau E, Schreiber F, Koschützki D, Junker BH (2009) Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiol 149:585–598PubMedCrossRefGoogle Scholar
  6. 6.
    Pfeiffer T, Sanchez-Valdenebro I, Nuno JC, Montero F, Schuster S (1999) METATOOL: for studying metabolic networks. Bioinformatics 15(3):251–257PubMedCrossRefGoogle Scholar
  7. 7.
    Hucka M et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 9(4):524–531CrossRefGoogle Scholar
  8. 8.
    Grafahrend-Belau E, Klukas C, Junker BH, Schreiber F (2009) FBA-SimVis: interactive visualization of constraint-based metabolic models. Bioinformatics 25(20):2755–2757PubMedCrossRefGoogle Scholar
  9. 9.
    Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7:109PubMedCrossRefGoogle Scholar
  10. 10.
    Grafahrend-Belau E, Schreiber F, Heiner M, Sackmann A, Junker BH, Grunwald S, Speer A, Winder K, Koch I (2008) Modularization of biochemical networks based on classification of Petri net t-invariants. BMC Bioinformatics 9:90–116PubMedCrossRefGoogle Scholar
  11. 11.
    Sackmann A, Heiner M, Koch I (2006) Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinformatics 7:482PubMedCrossRefGoogle Scholar
  12. 12.
    Pérès S, Beurton-Aimar M, Mazat JP (2006) Pathway classification of TCA cycle. IEE Proc Syst Biol 5:369–371Google Scholar
  13. 13.
    Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782PubMedCrossRefGoogle Scholar
  14. 14.
    Goffman FD, Alonso AP, Schwender J, Shachar-Hill Y, Ohlrogge JB (2005) Light enables a very high efficiency of carbon storage in developing embryos of Rapeseed. Plant Physiol 138(4):2269–2279PubMedCrossRefGoogle Scholar
  15. 15.
    Alonso AP, Goffman FD, Ohlrogge JB, Shachar-Hill Y (2007) Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos. Plant J 52(2):296–308PubMedCrossRefGoogle Scholar
  16. 16.
    Edwards JS, Palsson BØ (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition characteristics, and capabilities. Proc Natl Acad Sci U S A 97:5528–5533PubMedCrossRefGoogle Scholar
  17. 17.
    Schilling CH, Covert MW, Famili I, Church GM, Edwards JS, Palsson BØ (2002) Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol 184:4582–4593PubMedCrossRefGoogle Scholar
  18. 18.
    Price ND, Reed JL, Palsson BØ (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints of metabolic modelling to plant metabolism. Nat Rev Microbiol 2:886–897PubMedCrossRefGoogle Scholar
  19. 19.
    Klukas C, Schreiber F (2010) Integration of -omics data and networks for biomedical research. J Integr Bioinform 7:112PubMedGoogle Scholar
  20. 20.
    Koch I, Reisig W, Schreiber F (2010) Modeling in systems biology: the Petri Net approach. Springer Book Series Computational Biology, vol 16Google Scholar
  21. 21.
    Penning de Vries FWT, Brunsting AH, van Laar HH (1974) Products, requirements and efficiency of biosynthesis: a quantitative approach. J Theor Biol 45:339–377PubMedCrossRefGoogle Scholar
  22. 22.
    Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30PubMedCrossRefGoogle Scholar
  23. 23.
    Rolletschek H, Weschke W, Weber H, Wobus U, Borisjuk L (2004) Energy state and its control on seed development: starch accumulation is associated with high ATP and steep oxygen gradients within barley grains. J Exp Bot 55:1351–1359PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Katrin Lotz
    • 1
  • Anja Hartmann
    • 2
  • Eva Grafahrend-Belau
    • 2
  • Falk Schreiber
    • 3
  • Björn H. Junker
    • 2
  1. 1.Institute of Computer ScienceSunGene GmbH, Gatersleben and Martin-Luther University Halle-WittenbergHalleGermany
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  3. 3.Institute of Computer Science, Halle and Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Martin-Luther University Halle-WittenbergGaterslebenGermany

Personalised recommendations