Advertisement

The Cre/Lox System to Assess the Development of the Mouse Brain

  • Claudius F. Kratochwil
  • Filippo M. Rijli
Part of the Methods in Molecular Biology book series (MIMB, volume 1082)

Abstract

Cre-mediated recombination has become a powerful tool to confine gene deletions (conditional knockouts) or overexpression of genes (conditional knockin/overexpression). By spatiotemporal restriction of genetic manipulations, major problems of classical knockouts such as embryonic lethality can be circumvented. Furthermore Cre-mediated recombination has broad applicability in the analysis of the cellular behavior of subpopulations and cell types as well as for genetic fate mapping. This chapter will give an overview about applications for the Cre/LoxP system and their execution.

Key words

Cre recombinase Transgenesis Conditional knockout Conditional knockin CreERT2 Flpe recombinase MADM Split-Cre Brainbow 

Notes

Acknowledgements

Work in F.M.R. laboratory in Friedrich Miescher Institute (Basel, Switzerland) is supported by the Swiss National Science Foundation (Sinergia CRSI33_127440), ARSEP, and the Novartis Research Foundation.

References

  1. 1.
    Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512PubMedCrossRefGoogle Scholar
  2. 2.
    Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265(5168):103–106PubMedCrossRefGoogle Scholar
  3. 3.
    Lakso M, Sauer B, Mosinger B, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA 89(14):6232–6236PubMedCrossRefGoogle Scholar
  4. 4.
    Sauer B (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14(4):381–392PubMedCrossRefGoogle Scholar
  5. 5.
    O’Neal KR, Agah R (2007) Conditional targeting: inducible deletion by cre recombinase. Methods Mol Biol 366:309–320PubMedCrossRefGoogle Scholar
  6. 6.
    Kim JC, Dymecki SM (2009) Genetic fate-mapping approaches: new means to explore the embryonic origins of the cochlear nucleus. Methods Mol Biol 493:65–85PubMedCrossRefGoogle Scholar
  7. 7.
    Wilson TJ, Kola I (2001) The LoxP/CRE system and genome modification. Methods Mol Biol 158:83–94PubMedGoogle Scholar
  8. 8.
    Brault V, Besson V, Magnol L, Duchon A, Hérault Y (2007) Cre/loxP-mediated chromosome engineering of the mouse genome. Handb Exp Pharmacol 178:29–48PubMedCrossRefGoogle Scholar
  9. 9.
    Feil S, Valtcheva N, Feil R (2009) Inducible Cre mice. Methods Mol Biol 530:343–363PubMedCrossRefGoogle Scholar
  10. 10.
    Siegal ML, Hartl DL (1996) Transgene Coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 144(2):715–726PubMedGoogle Scholar
  11. 11.
    Werdien D, Peiler G, Ryffel GU (2001) FLP and Cre recombinase function in Xenopus embryos. Nucleic Acids Res 29(11):E53–3PubMedCrossRefGoogle Scholar
  12. 12.
    Dong J, Stuart GW (2004) Transgene manipulation in zebrafish by using recombinases. Methods Cell Biol 77:363–379PubMedCrossRefGoogle Scholar
  13. 13.
    Gilbertson L (2003) Cre-lox recombination: Creative tools for plant biotechnology. Trends Biotechnol 21(12):550–555PubMedCrossRefGoogle Scholar
  14. 14.
    Guo F, Gopaul DN, van Duyne GD (1997) Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389(6646):40–46PubMedCrossRefGoogle Scholar
  15. 15.
    Nakano M, Odaka K, Ishimura M, Kondo S, Tachikawa N, Chiba J, Kanegae Y, Saito I (2001) Efficient gene activation in cultured mammalian cells mediated by FLP recombinase-expressing recombinant adenovirus. Nucleic Acids Res 29(7):E40PubMedCrossRefGoogle Scholar
  16. 16.
    Buchholz F, Angrand P-O, Stewart AF (1998) Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16(7):657–662PubMedCrossRefGoogle Scholar
  17. 17.
    Rodríguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, Stewart AF, Dymecki SM (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25(2):139–140PubMedCrossRefGoogle Scholar
  18. 18.
    Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237(3):752–757PubMedCrossRefGoogle Scholar
  19. 19.
    Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA 93(20):10887–10890PubMedCrossRefGoogle Scholar
  20. 20.
    Edwards WF, Young DD, Deiters A (2009) Light-activated Cre recombinase as a tool for the spatial and temporal control of gene function in mammalian cells. ACS Chem Biol 4(6):441–445PubMedCrossRefGoogle Scholar
  21. 21.
    Hirrlinger J, Scheller A, Hirrlinger PG et al (2009) Split-cre complementation indicates coincident activity of different genes in vivo. PLoS One 4(1):e4286PubMedCrossRefGoogle Scholar
  22. 22.
    Hirrlinger J, Requardt RP, Winkler U, Wilhelm F, Schulze C, Hirrlinger PG (2009) Split-CreERT2: temporal control of DNA recombination mediated by split-Cre protein fragment complementation. PLoS One 4(12):e8354PubMedCrossRefGoogle Scholar
  23. 23.
    Wang P, Chen T, Sakurai K, Han B-X, He Z, Feng G, Wang F (2012) Intersectional cre driver lines generated using split-intein mediated split-cre reconstitution. Sci Rep 2:497PubMedGoogle Scholar
  24. 24.
    Farago AF, Awatramani RB, Dymecki SM (2006) Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50(2):205–218PubMedCrossRefGoogle Scholar
  25. 25.
    Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L (2005) Mosaic analysis with double markers in mice. Cell 121(3):479–492PubMedCrossRefGoogle Scholar
  26. 26.
    Tasic B, Miyamichi K, Hippenmeyer S, Dani VS, Zeng H, Joo W, Zong H, Chen-Tsai Y, Luo L (2012) Extensions of MADM (mosaic analysis with double markers) in mice. PLoS One 7(3):e33332PubMedCrossRefGoogle Scholar
  27. 27.
    Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22(3):451–461PubMedCrossRefGoogle Scholar
  28. 28.
    Hippenmeyer S, Youn YH, Moon HM, Miyamichi K, Zong H, Wynshaw-Boris A, Luo L (2010) Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68(4):695–709PubMedCrossRefGoogle Scholar
  29. 29.
    Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166):56–62PubMedCrossRefGoogle Scholar
  30. 30.
    Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71PubMedCrossRefGoogle Scholar
  31. 31.
    Madisen L, Zwingman TA, Sunkin SM et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140PubMedCrossRefGoogle Scholar
  32. 32.
    Luo L (2007) Fly MARCM and mouse MADM: genetic methods of labeling and manipulating single neurons. Brain Res Rev 55(2):220–227PubMedCrossRefGoogle Scholar
  33. 33.
    Potter CJ, Tasic B, Russler EV, Liang L, Luo L (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141(3):536–548PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang Y, Buchholz F, Muyrers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20(2):123–128PubMedCrossRefGoogle Scholar
  35. 35.
    Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 85(14):5166–5170PubMedCrossRefGoogle Scholar
  36. 36.
    Santoro SW, Schultz PG (2002) Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci USA 99(7):4185–4190PubMedCrossRefGoogle Scholar
  37. 37.
    Schnütgen F, Doerflinger N, Calléja C, Wendling O, Chambon P, Ghyselinck NB (2003) A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Rev Neurosci 21(5):562–565CrossRefGoogle Scholar
  38. 38.
    Zheng B, Sage M, Sheppeard EA, Jurecic V, Bradley A (2000) Engineering mouse chromosomes with Cre-loxP: range, efficiency, and somatic applications. Mol Cell Biol 20(2):648–655PubMedCrossRefGoogle Scholar
  39. 39.
    Visel A, Minovitsky S, Dubchak I, Pennacchio LA (2007) VISTA Enhancer Browser–a database of tissue-specific human enhancers. Nucleic Acids Res 35:D88–D92PubMedCrossRefGoogle Scholar
  40. 40.
    Engström PG, Fredman D, Lenhard B (2008) Ancora: a web resource for exploring highly conserved noncoding elements and their association with developmental regulatory genes. Genome Biol 9(2):R34PubMedCrossRefGoogle Scholar
  41. 41.
    Visel A, Blow MJ, Li Z et al (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457(7231):854–858PubMedCrossRefGoogle Scholar
  42. 42.
    Yee SP, Rigby PW (1993) The regulation of myogenin gene expression during the embryonic development of the mouse. Genes Dev 7(7A):1277–1289PubMedCrossRefGoogle Scholar
  43. 43.
    Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4PubMedCrossRefGoogle Scholar
  44. 44.
    Hope IA, Struhl K (1987) GCN4, a eukaryotic transcriptional activator protein, binds as a dimer to target DNA. EMBO J 6(9):2781–2784PubMedGoogle Scholar
  45. 45.
    Espinosa JS, Luo L (2008) Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells. J Neurosci 28(10):2301–2312PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Claudius F. Kratochwil
    • 1
  • Filippo M. Rijli
    • 1
  1. 1.Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland

Personalised recommendations