Plant Cell Lines in Cell Morphogenesis Research

  • Daniela Seifertová
  • Petr Klíma
  • Markéta Pařezová
  • Jan Petrášek
  • Eva Zažímalová
  • Zdeněk Opatrný
Part of the Methods in Molecular Biology book series (MIMB, volume 1080)


Plant organs and tissues consist of many various cell types, often in different phases of their development. Such complex structures do not allow direct studies on behavior of individual cells. In contrast, populations of in vitro-cultured plant cells represent valuable tool for studying processes on a single-cell level, including cell morphogenesis. Here we describe characteristics of well-established model tobacco and Arabidopsis cell lines and provide detailed protocol on their cultivation, characterization, and genetic transformation.

Key words

BY-2 VBI-0 Suspension-cultured cells Cell phenotyping Cell viability Cell density Culture friability Micromorphology Subculture interval (SBI) 



The authors acknowledge support for their work by the Grant Agency of the Czech Republic (projects P305/11/0797 and P305/11/2476), Ministry of Education, Youth and Sport of the Czech Republic (project MSM00216208858), and Charles University in Prague (project SVV 265203/2012).


  1. 1.
    Tulecke W, Nickell LG (1959) Production of large amounts of plant tissue by submerged culture. Science 130:863–864PubMedCrossRefGoogle Scholar
  2. 2.
    Nickell LG, Tulecke W (1960) Submerged growth of cells of higher plants. Biotechnol Bioeng 2:287–297CrossRefGoogle Scholar
  3. 3.
    Street HE, King PJ, Mansfield KJ (1971) Growth control in plant cell suspension cultures. In: Les cultures de tissus de plants. Colloques Internationaux du C.N.R.S. 193. Éditions du Centre National de la Recherche Scientifique, Paris, p 2–40Google Scholar
  4. 4.
    Opatrný Z (1971) Using of tissue cultures in plant genetics. Thesis, Inst. Exp. Bot. ČSAV, Prague (in Czech)Google Scholar
  5. 5.
    Opatrný Z, Opatrná J (1976) The specificity of the effect of 2,4-D and NAA on the growth, micromorphology, and occurrence of starch in long-term Nicotiana tabacum L. cell strains. Biol Plantarum 18:359–365CrossRefGoogle Scholar
  6. 6.
    Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30CrossRefGoogle Scholar
  7. 7.
    Nagata T, Hasezawa S, Inzé D (eds) (2004) Tobacco BY-2 cells. Biotechnology in agriculture and forestry, vol 53. Springer, Berlin, HeidelbergGoogle Scholar
  8. 8.
    Nagata T, Matsuoka K, Inzé D (eds) (2006) Tobacco BY-2 cells: from cellular dynamics to omics. Biotechnology in agriculture and forestry, vol 58. Springer, Berlin, HeidelbergGoogle Scholar
  9. 9.
    Petrášek J, Freudereich A, Heuing A et al (1998) Heat-shock protein 90 is associated with microtubules in tobacco cells. Protoplasma 202:161–174CrossRefGoogle Scholar
  10. 10.
    Campanoni P, Blasius B, Nick P (2003) Auxin transport synchronizes the pattern of cell division in a tobacco cell line. Plant Physiol 133: 1251–1260PubMedCrossRefGoogle Scholar
  11. 11.
    Holweg C, Honsel A, Nick P (2003) A myosin inhibitor impairs auxin-induced cell division. Protoplasma 222:193–204PubMedCrossRefGoogle Scholar
  12. 12.
    Campanoni P, Nick P (2005) Auxin-dependent cell division and elongation. 1-naphtaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiol 137: 939–948PubMedCrossRefGoogle Scholar
  13. 13.
    Paciorek T, Zažímalová E, Ruthardt N et al (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256PubMedCrossRefGoogle Scholar
  14. 14.
    Qiao F, Petrášek J, Nick P (2010) Light can rescue auxin-dependent synchrony of cell division in a tobacco cell line. J Exp Bot 61:503–510PubMedCrossRefGoogle Scholar
  15. 15.
    Marhavý P, Bielach A, Abas L et al (2011) Cytokinin modulates endocytotic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell 21:796–804PubMedCrossRefGoogle Scholar
  16. 16.
    Kovařík A, Lim K-Y, Součková-Skalická K et al (2012) A plant culture (BY-2) widely used in molecular and cell studies is genetically unstable and highly heterogeneous. Bot J Linn Soc 170:459–471CrossRefGoogle Scholar
  17. 17.
    May MJ, Leaver CJ (1993) Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol 103:621–627PubMedGoogle Scholar
  18. 18.
    Matsunaga S, Ohmido N, Fukui K (2006) Chromosome dynamics in tobacco BY-2 cultured cell. In: Nagata T, Matsuoka K, Inzé D (eds) Tobacco BY-2 cells: from cellular dynamics to omics. Biotechnology in agriculture and forestry, vol 58. Springer, Berlin, Heidelberg, pp 51–63CrossRefGoogle Scholar
  19. 19.
    Frey N, Klotz J, Nick P (2010) A kinesin with calponin-homology domain is involved in premitotic nuclear migration. J Exp Bot 61: 3423–3437PubMedCrossRefGoogle Scholar
  20. 20.
    Widholm JM (1972) The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol 47:189–194PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Daniela Seifertová
    • 1
  • Petr Klíma
    • 1
  • Markéta Pařezová
    • 1
  • Jan Petrášek
    • 2
  • Eva Zažímalová
    • 1
  • Zdeněk Opatrný
    • 3
  1. 1.Institute of Experimental BotanyAcademy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Department of Experimental Plant Biology, Faculty of ScienceCharles University and Institute of Experimental Botany, Academy of Sciences of the Czech RepublicPragueCzech Republic
  3. 3.Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPragueCzech Republic

Personalised recommendations