Sirtuins pp 105-120 | Cite as

SILAC-Based Quantification of Sirt1-Responsive Lysine Acetylome

  • Yue Chen
  • Gozde Colak
  • Yingming Zhao
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1077)

Abstract

Stable Isotope Labeling by Amino acids in Cell culture (SILAC) is one of the in vivo metabolic labeling methods widely used for dynamic analysis of protein modifications. Here, we describe a general approach to applying SILAC, in combination with affinity enrichment of acetyllysine peptides and mass spectrometry, to study the dynamic changes of the Lysine acetylome in response to Sirt1. The method should be applicable to quantify changes to other post translational modifications in diverse cellular systems.

Key words

SILAC Quantification Sirt1 Immunoaffinity purification Lysine acetylation Nano HPLC mass spectrometry 

References

  1. 1.
    Gershey EL, Vidali G, Allfrey VG (1968) Chemical studies of histone acetylation. The occurrence of epsilon-N-acetyllysine in the f2a1 histone. J Biol Chem 243(19):5018–5022PubMedGoogle Scholar
  2. 2.
    Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90(4):595–606. doi:S0092-8674(00)80521-8 [pii]PubMedCrossRefGoogle Scholar
  3. 3.
    Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120. doi:70/1/81 [pii] 10.1146/annurev.biochem.70.1.81 PubMedCrossRefGoogle Scholar
  4. 4.
    Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23(4):607–618. doi:10.1016/j.molcel.2006.06.026 PubMedCrossRefGoogle Scholar
  5. 5.
    Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840. doi:1175371 [pii] 10.1126/science.1175371 PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV, Zhao Y (2009) Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics 8(2):215–225. doi:M800187-MCP200 [pii] 10.1074/mcp.M800187-MCP200 PubMedCrossRefGoogle Scholar
  7. 7.
    Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, Ning ZB, Zeng R, Xiong Y, Guan KL, Zhao S, Zhao GP (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327(5968):1004–1007. doi:327/5968/1004 [pii] 10.1126/science.1179687 PubMedCrossRefGoogle Scholar
  8. 8.
    Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan KL (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968):1000–1004. doi:327/5968/1000 [pii] 10.1126/science.1179689 PubMedCrossRefGoogle Scholar
  9. 9.
    Chen Y, Zhao W, Yang JS, Cheng Z, Luo H, Lu Z, Tan M, Gu W, Zhao Y (2012) Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways. Mol Cell Proteomics 11(10):1048–1062. doi:M112.019547 [pii] 10.1074/mcp.M112.019547 PubMedCrossRefGoogle Scholar
  10. 10.
    Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107(2):137–148. doi:S0092-8674(01)00524-4 [pii]PubMedCrossRefGoogle Scholar
  11. 11.
    Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107(2):149–159. doi:S0092-8674(01)00527-X [pii]PubMedCrossRefGoogle Scholar
  12. 12.
    Peng L, Yuan Z, Ling H, Fukasawa K, Robertson K, Olashaw N, Koomen J, Chen J, Lane WS, Seto E (2011) SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol Cell Biol 31(23):4720–4734. doi:MCB.06147-11 [pii] 10.1128/MCB.06147-11PubMedCrossRefGoogle Scholar
  13. 13.
    Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23(12):2369–2380. doi:10.1038/sj.emboj.7600244 7600244 [pii]PubMedCrossRefGoogle Scholar
  14. 14.
    Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303(5666):2011–2015. doi:10.1126/science.1094637 1094637 [pii]PubMedCrossRefGoogle Scholar
  15. 15.
    Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 280(16):16456–16460. doi:M501485200 [pii] 10.1074/jbc.M501485200 PubMedCrossRefGoogle Scholar
  16. 16.
    Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771):795–800. doi:10.1038/35001622 PubMedCrossRefGoogle Scholar
  17. 17.
    Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4(12):2010–2021. doi:T500030-MCP200 [pii] 10.1074/mcp.T500030-MCP200 PubMedCrossRefGoogle Scholar
  18. 18.
    Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567. doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-LPS3551>3.0.CO;2–2 [pii] 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2–2PubMedCrossRefGoogle Scholar
  19. 19.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. doi:nbt.1511 [pii] 10.1038/nbt.1511 PubMedCrossRefGoogle Scholar
  20. 20.
    Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, Olsen JV, Mann M (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4(5):698–705. doi:nprot.2009.36 [pii] 10.1038/nprot.2009.36 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Yue Chen
    • 1
  • Gozde Colak
    • 1
  • Yingming Zhao
    • 1
  1. 1.Ben May Department for Cancer ResearchUniversity of ChicagoChicagoUSA

Personalised recommendations