Sirtuins pp 241-258

Part of the Methods in Molecular Biology book series (MIMB, volume 1077)

Oxygen Flux Analysis to Understand the Biological Function of Sirtuins

  • Dongning Wang
  • Michelle F. Green
  • Eoin McDonnell
  • Matthew D. Hirschey


The sirtuins are a family of highly conserved NAD+-dependent lysine deacylases with important roles in metabolic regulation. Of the seven mammalian sirtuins, three localize to the mitochondria: SIRT3, SIRT4, and SIRT5. Mitochondrial sirtuins are crucial regulators of the metabolic network that controls energy homeostasis and impacts cancer, obesity, diabetes, mitochondrial diseases, metabolic disorders, and many other human diseases of aging. To best study the mitochondrial function of the sirtuins, we have employed an oxygen flux analyzer as a tool to track and record the extracellular oxygen consumption rate and acidification rate that reflects mitochondrial respiration and glycolysis, respectfully. Here we described the methods using this assay to study the substrate utilization and mitochondrial function in a human hepatocellular carcinoma cell line, Huh7. Additionally, we have generated a stable SIRT4 knocked-down Huh7 cell line. With this cell line, we evaluated how the absence of SIRT4 affects mitochondrial function, glucose utilization, glutamine oxidation, and fatty acid oxidation in these cells.

Key words

Mitochondrial sirtuins Seahorse XF extracellular flux analyzer Oxygen consumption rate Seahorse assay Substrate utilization Mitochondrial function SIRT4 


  1. 1.
    Clark LC Jr, Kaplan S, Matthews EC, Edwards FK, Helmsworth JA (1958) Monitor and control of blood oxygen tension and pH during total body perfusion. J Thorac Surg 36(4): 488–496PubMedGoogle Scholar
  2. 2.
    Ferrick DA, Neilson A, Beeson C (2008) Advances in measuring cellular bioenergetics using extracellular flux. Drug Discov Today 13(5–6):268–274. doi:10.1016/j.drudis. 2007.12.008PubMedCrossRefGoogle Scholar
  3. 3.
    Hirschey Matthew D (2011) Old enzymes, new tricks: sirtuins are NAD+-dependent de-acylases. Cell Metab 14(6):718–719. doi:10.1016/j.cmet.2011.10.006 PubMedCrossRefGoogle Scholar
  4. 4.
    Anderson KA, Hirschey MD (2012) Mitochondrial protein acetylation regulates metabolism. Essays Biochem 52:23–35. doi:10.1042/bse0520023 PubMedGoogle Scholar
  5. 5.
    Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, Grueter CA, Harris C, Biddinger S, Ilkayeva OR, Stevens RD, Li Y, Saha AK, Ruderman NB, Bain JR, Newgard CB, Farese RV Jr, Alt FW, Kahn CR, Verdin E (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464(7285):121–125. doi:10.1038/nature08778 PubMedCrossRefGoogle Scholar
  6. 6.
    Hirschey MD, Shimazu T, Jing E, Grueter CA, Collins AM, Aouizerat B, Stancakova A, Goetzman E, Lam MM, Schwer B, Stevens RD, Muehlbauer MJ, Kakar S, Bass NM, Kuusisto J, Laakso M, Alt FW, Newgard CB, Farese RV Jr, Kahn CR, Verdin E (2011) SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell 44(2):177–190. doi:10.1016/j.molcel.2011.07.019 PubMedCrossRefGoogle Scholar
  7. 7.
    Picklo MJ Sr (2008) Ethanol intoxication increases hepatic N-lysyl protein acetylation. Biochem Biophys Res Commun 376(3):615–619. doi:10.1016/j.bbrc.2008.09.039 PubMedCrossRefGoogle Scholar
  8. 8.
    Qiu X, Brown K, Hirschey MD, Verdin E, Chen D (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12(6):662–667. doi:10.1016/j.cmet.2010.11.015 PubMedCrossRefGoogle Scholar
  9. 9.
    Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB, Li Y, Bunkenborg J, Alt FW, Denu JM, Jacobson MP, Verdin E (2010) SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 12(6):654–661. doi:10.1016/j.cmet.2010.11.003 PubMedCrossRefGoogle Scholar
  10. 10.
    Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334(6057):806–809. doi:10.1126/science.1207861 PubMedCrossRefGoogle Scholar
  11. 11.
    Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K, Zwaans BMM, Tishkoff D, Ho L, Lombard D, He T-C, Dai J, Verdin E, Ye Y, Zhao Y (2011) The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 10(12). doi:10.1074/mcp.M111.012658Google Scholar
  12. 12.
    Nakagawa T, Lomb DJ, Haigis MC, Guarente L (2009) SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137(3):560–570. doi:10.1016/j.cell.2009.02.026 PubMedCrossRefGoogle Scholar
  13. 13.
    Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G, Wolberger C, Prolla TA, Weindruch R, Alt FW, Guarente L (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126(5):941–954PubMedCrossRefGoogle Scholar
  14. 14.
    Nasrin N, Wu X, Fortier E, Feng Y, Bare OC, Chen S, Ren X, Wu Z, Streeper RS, Bordone L (2010) SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J Biol Chem 285(42):31995–32002. doi:10.1074/jbc.M110.124164 PubMedCrossRefGoogle Scholar
  15. 15.
    Ventura A, Meissner A, Dillon CP, McManus M, Sharp PA, Van Parijs L, Jaenisch R, Jacks T (2004) Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci U S A 101(28):10380–10385. doi:10.1073/pnas.0403954101 PubMedCrossRefGoogle Scholar
  16. 16.
    SeahorseBioscience (2009) XF24 extracellular flux analyzer and prep station installation and operation manual. Seahorse Bioscience Inc 1–159Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Dongning Wang
    • 1
  • Michelle F. Green
    • 1
  • Eoin McDonnell
    • 1
  • Matthew D. Hirschey
    • 1
    • 2
    • 3
  1. 1.Sarah W. Stedman Nutrition and Metabolism CenterDuke University Medical CenterDurhamUSA
  2. 2.Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamUSA
  3. 3.Department of MedicineDuke University Medical CenterDurhamUSA

Personalised recommendations