Sirtuins pp 203-215 | Cite as

Accurate Measurement of Nicotinamide Adenine Dinucleotide (NAD+) with High-Performance Liquid Chromatography

  • Jun Yoshino
  • Shin-ichiro Imai
Part of the Methods in Molecular Biology book series (MIMB, volume 1077)


Nicotinamide adenine dinucleotide (NAD+) plays a critical role in regulating numerous biological and physiological pathways including metabolism, inflammation, cancer, and aging in mammals. Here we describe a highly quantitative method with reverse-phase high-performance liquid chromatography (HPLC) for the determination of NAD+ levels in cells and tissues. This methodology provides accurate, reliable, and reproducible results of NAD+ measurement, which enables us to analyze various pathophysiological changes in NAD+ levels in vitro and in vivo.

Key words

Nicotinamide adenine dinucleotide (NAD+HPLC NAMPT 



We thank Drs. Xuntian Jiang and Daniel Ory for mass spec analysis in the Metabolomics Facility at Washington University School of Medicine. We also thank members of the Imai lab for their critical discussions. This work was supported in part by the National Institute on Aging (AG02150), the Ellison Medical Foundation, and the Longer Life Foundation to S.I. and by institutional support from the Washington University Nutrition Obesity Research Center (P30DK056341) and the Washington University Diabetes Research and Training Center (P60DK020579). S.I. serves as a scientific advisory board member for Sirtris, a GSK company.


  1. 1.
    Belenky P, Bogan KL, Brenner C (2007) NAD + metabolism in health and disease. Trends Biochem Sci 32(1):12–19. doi: 10.1016/j.tibs.2006.11.006 PubMedCrossRefGoogle Scholar
  2. 2.
    Stein LR, Imai S (2012) The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol Metab 23(9):420–428. doi: 10.1016/j.tem.2012.06.005 PubMedCrossRefGoogle Scholar
  3. 3.
    Revollo JR, Grimm AA, Imai S (2007) The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr Opin Gastroenterol 23(2):164–170. doi: 10.1097/MOG.0b013e32801b3c8f PubMedCrossRefGoogle Scholar
  4. 4.
    Imai S (2009) The NAD world: a new systemic regulatory network for metabolism and aging–Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys 53(2):65–74. doi: 10.1007/s12013-008-9041-4 PubMedCrossRefGoogle Scholar
  5. 5.
    Magni G, Amici A, Emanuelli M, Raffaelli N, Ruggieri S (1999) Enzymology of NAD + synthesis. Adv Enzymol Relat Areas Mol Biol 73:135–182PubMedGoogle Scholar
  6. 6.
    Bogan KL, Brenner C (2008) Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD + precursor vitamins in human nutrition. Annu Rev Nutr 28:115–130. doi: 10.1146/annurev.nutr.28.061807.155443 PubMedCrossRefGoogle Scholar
  7. 7.
    Revollo JR, Grimm AA, Imai S (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279(49):50754–50763. doi: 10.1074/jbc.M408388200 PubMedCrossRefGoogle Scholar
  8. 8.
    Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39(1):8–24. doi: 10.1016/j.molcel.2010.06.017 PubMedCrossRefGoogle Scholar
  9. 9.
    Bai P, Canto C (2012) The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab 16(3):290–295. doi: 10.1016/j.cmet.2012.06.016 PubMedGoogle Scholar
  10. 10.
    Corda D, Di Girolamo M (2003) Functional aspects of protein mono-ADP-ribosylation. EMBO J 22(9):1953–1958. doi: 10.1093/emboj/cdg209 PubMedCrossRefGoogle Scholar
  11. 11.
    Lee HC (2001) Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Annu Rev Pharmacol Toxicol 41:317–345. doi: 10.1146/annurev.pharmtox.41.1.317 PubMedCrossRefGoogle Scholar
  12. 12.
    Imai S, Guarente L (2010) Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci 31(5):212–220. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  13. 13.
    Guarente L (2011) Franklin H. Epstein lecture: sirtuins, aging, and medicine. N Eng J Med 364(23):2235–2244. doi: 10.1056/NEJMra1100831 CrossRefGoogle Scholar
  14. 14.
    Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, Takahashi JS, Imai S, Bass J (2009) Circadian clock feedback cycle through NAMPT-mediated NAD + biosynthesis. Science 324(5927):651–654. doi: 10.1126/science.1171641 PubMedCrossRefGoogle Scholar
  15. 15.
    Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD + salvage pathway by CLOCK-SIRT1. Science 324(5927):654–657. doi: 10.1126/science.1170803 PubMedCrossRefGoogle Scholar
  16. 16.
    Imai S (2010) “Clocks” in the NAD world: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochim Biophys Acta 1804(8):1584–1590. doi: 10.1016/j.bbapap.2009.10.024 PubMedCrossRefGoogle Scholar
  17. 17.
    Yoshino J, Mills KF, Yoon MJ, Imai S (2011) Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 14(4):528–536. doi: 10.1016/j.cmet.2011.08.014 PubMedCrossRefGoogle Scholar
  18. 18.
    Revollo JR, Korner A, Mills KF, Satoh A, Wang T, Garten A, Dasgupta B, Sasaki Y, Wolberger C, Townsend RR, Milbrandt J, Kiess W, Imai S (2007) Nampt/PBEF/visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab 6(5):363–375. doi: 10.1016/j.cmet.2007.09.003 PubMedCrossRefGoogle Scholar
  19. 19.
    Bai P, Canto C, Oudart H, Brunyanszki A, Cen Y, Thomas C, Yamamoto H, Huber A, Kiss B, Houtkooper RH, Schoonjans K, Schreiber V, Sauve AA, Menissier-de Murcia J, Auwerx J (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13(4):461–468. doi: 10.1016/j.cmet.2011.03.004 PubMedCrossRefGoogle Scholar
  20. 20.
    Barbosa MT, Soares SM, Novak CM, Sinclair D, Levine JA, Aksoy P, Chini EN (2007) The enzyme CD38 (a NAD glycohydrolase, EC is necessary for the development of diet-induced obesity. FASEB J 21(13):3629–3639. doi: 10.1096/fj.07-8290com PubMedCrossRefGoogle Scholar
  21. 21.
    Gillum MP, Erion DM, Shulman GI (2010) Sirtuin-1 regulation of mammalian metabolism. Trends Mol Med. doi: 10.1016/j.molmed.2010.09.005 PubMedGoogle Scholar
  22. 22.
    Braidy N, Jayasena T, Poljak A, Sachdev PS (2012) Sirtuins in cognitive ageing and Alzheimer’s disease. Curr Opin Psychiatry 25(3):226–230. doi: 10.1097/YCO.0b013e32835112c1 PubMedCrossRefGoogle Scholar
  23. 23.
    Donmez G, Wang D, Cohen DE, Guarente L (2010) SIRT1 Suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 142(2):320–332. doi: 10.1016/j.cell.2010.06.020 PubMedCrossRefGoogle Scholar
  24. 24.
    Cohen-Kfir E, Artsi H, Levin A, Abramowitz E, Bajayo A, Gurt I, Zhong L, D’Urso A, Toiber D, Mostoslavsky R, Dresner-Pollak R (2011) Sirt1 is a regulator of bone mass and a repressor of sost encoding for sclerostin, a bone formation inhibitor. Endocrinology 152(12):4514–4524. doi: 10.1210/en.2011-1128 PubMedCrossRefGoogle Scholar
  25. 25.
    Li Y, He X, Li Y, He J, Anderstam B, Andersson G, Lindgren U (2011) Nicotinamide phosphoribosyltransferase (Nampt) affects the lineage fate determination of mesenchymal stem cells: a possible cause for reduced osteogenesis and increased adipogenesis in older individuals. J Bone Miner Res 26(11):2656–2664. doi: 10.1002/jbmr.480 PubMedCrossRefGoogle Scholar
  26. 26.
    Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB, Pandolfi PP, Haigis MC (2011) SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 19(3):416–428. doi: 10.1016/j.ccr.2011.02.014 PubMedCrossRefGoogle Scholar
  27. 27.
    Sebastian C, Zwaans BM, Silberman DM, Gymrek M, Goren A, Zhong L, Ram O, Truelove J, Guimaraes AR, Toiber D, Cosentino C, Greenson JK, Macdonald AI, McGlynn L, Maxwell F, Edwards J, Giacosa S, Guccione E, Weissleder R, Bernstein BE, Regev A, Shiels PG, Lombard DB, Mostoslavsky R (2012) The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151(6):1185–1199. doi: 10.1016/j.cell.2012.10.047 PubMedCrossRefGoogle Scholar
  28. 28.
    Canto C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, Fernandez-Marcos PJ, Yamamoto H, Andreux PA, Cettour-Rose P, Gademann K, Rinsch C, Schoonjans K, Sauve AA, Auwerx J (2012) The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 15(6):838–847. doi: 10.1016/j.cmet.2012.04.022 PubMedCrossRefGoogle Scholar
  29. 29.
    Escande C, Nin V, Price NL, Capellini V, Gomes AP, Barbosa MT, O’Neil L, White TA, Sinclair DA, Chini EN (2012) Flavonoid apigenin is an inhibitor of the NAD + ase CD38: implications for cellular NAD + metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes. doi: 10.2337/db12-1139 PubMedGoogle Scholar
  30. 30.
    Imai S (2010) A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis. Pharmacol Res 62(1):42–47. doi: 10.1016/j.phrs.2010.01.006 PubMedCrossRefGoogle Scholar
  31. 31.
    Hasmann M, Schemainda I (2003) FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res 63(21): 7436–7442PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Jun Yoshino
    • 1
  • Shin-ichiro Imai
    • 2
  1. 1.Center for Human Nutrition, Department of MedicineWashington University School of MedicineSt. LouisUSA
  2. 2.Department of Developmental BiologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations