Advertisement

N-Glycoprotein Enrichment by Lectin Affinity Chromatography

  • Eliel Ruiz-May
  • Carmen Catalá
  • Jocelyn K. C. Rose
Part of the Methods in Molecular Biology book series (MIMB, volume 1072)

Abstract

Lectins are proteins that bind to sugars with varying specificities and several have been identified that show differential binding to structurally variable glycans attached to glycoproteins. Consequently, lectin affinity chromatography represents a valuable tool for glycoproteome studies, allowing enrichment of glycoproteins in samples prior to their identification by mass spectrometry (MS). From the perspective of plant scientists, lectin enrichment has proven useful for studies of the proteomes of the secretory pathways and cell wall, due to the high proportion of constituent proteins that are glycosylated. This chapter outlines a strategy to generate samples enriched with glycoproteins from bulk plant tissues prior to further characterization by MS, or other techniques.

Key words

Glycoprotein Lectins Affinity chromatography Concanavalin A 

Notes

Acknowledgments

Funding to JKCR for research in this area is provided by the NSF Plant Genome Research Program (DBI-0606595) and the New York State Office of Science, Technology and Academic Research (NYSTAR).

References

  1. 1.
    Marino K, Bones J, Kattla JJ et al (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol 6:713–723PubMedCrossRefGoogle Scholar
  2. 2.
    An HJ, Froehlich JW, Lebrilla CB (2009) Determination of glycosylation sites and site-specific heterogeneity in glycoproteins. Curr Opin Chem Biol 13:421–426PubMedCrossRefGoogle Scholar
  3. 3.
    Pless DD, Lennarz WJ (1977) Enzymatic conversion of proteins to glycoproteins. Proc Natl Acad Sci USA 74:134–138PubMedCrossRefGoogle Scholar
  4. 4.
    Matsuoka K, Watanabe N, Nakamura K (1995) O-glycosylation of a precursor to a sweet potato vacuolar protein, sporamin, expressed in tobacco cells. Plant J 8:877–889PubMedCrossRefGoogle Scholar
  5. 5.
    Cho YP, Chrispeels MJ (1976) Serine-O-galactosyl linkages in glycopeptides from carrot cell-walls. Phytochemistry 15: 165–169CrossRefGoogle Scholar
  6. 6.
    Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417PubMedCrossRefGoogle Scholar
  7. 7.
    Velasquez SM, Ricardi MM, Dorosz JG et al (2011) O-glycosylated cell wall proteins are essential in root hair growth. Science 332: 1401–1403PubMedCrossRefGoogle Scholar
  8. 8.
    Zielinska DF, Gnad F, Wisniewski JR et al (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897–907PubMedCrossRefGoogle Scholar
  9. 9.
    Kaji H, Kamiie J, Kawakami H et al (2007) Proteomics reveals N-linked glycoprotein diversity in Caenorhabditis elegans and suggests an atypical translocation mechanism for integral membrane proteins. Mol Cell Proteomics 6:2100–2109PubMedCrossRefGoogle Scholar
  10. 10.
    Wollscheid B, Bausch-Fluck D, Henderson C et al (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27: 378–386PubMedCrossRefGoogle Scholar
  11. 11.
    Gundry RL, Raginski K, Tarasova Y et al (2009) The mouse C2C12 myoblast cell surface N-linked glycoproteome: identification, glycosite occupancy, and membrane orientation. Mol Cell Proteomics 8:2555–2569PubMedCrossRefGoogle Scholar
  12. 12.
    Liu T, Qian WJ, Gritsenko MA et al (2005) Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res 4:2070–2080PubMedCrossRefGoogle Scholar
  13. 13.
    Bunkenborg J, Pilch BJ, Podtelejnikov AV et al (2004) Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics 4:454–465PubMedCrossRefGoogle Scholar
  14. 14.
    Lee A, Kolarich D, Haynes PA et al (2009) Rat liver membrane glycoproteome: enrichment by phase partitioning and glycoprotein capture. J Proteome Res 8:770–781PubMedCrossRefGoogle Scholar
  15. 15.
    Minic Z, Jamet E, Negroni L et al (2007) A sub-proteome of Arabidopsis thaliana mature stems trapped on Concanavalin A is enriched in cell wall glycoside hydrolases. J Exp Bot 58:2503–2512PubMedCrossRefGoogle Scholar
  16. 16.
    Catala C, Howe KJ, Hucko S et al (2011) Towards characterization of the glycoproteome of tomato (Solanum lycopersicum) fruit using Concanavalin A lectin affinity chromatography and LC-MALDI-MS/MS analysis. Proteomics 8:1530–1544CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Giboulot A, Zivy M et al (2010) Combining various strategies to increase the coverage of the plant cell wall glycoproteome. Phytochemistry 10:1109–1123Google Scholar
  18. 18.
    Zhang H, Li XJ, Martin DB et al (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666PubMedCrossRefGoogle Scholar
  19. 19.
    Sparbier K, Koch S, Kessler I et al (2005) Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J Biomol Tech 16:407–413PubMedGoogle Scholar
  20. 20.
    Nilsson CL (2011) Lectin techniques for glycoproteomics. Curr Proteomics 8:248–256CrossRefGoogle Scholar
  21. 21.
    McDonald CA, Yang JY, Marathe V et al (2009) Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol Cell Proteomics 8: 287–301PubMedGoogle Scholar
  22. 22.
    Choi E, Loo D, Dennis JW et al (2011) High-throughput lectin magnetic bead array-coupled tandem mass spectrometry for glycoprotein biomarker discovery. Electrophoresis 32:3564–3575PubMedCrossRefGoogle Scholar
  23. 23.
    Yang G, Cui T, Chen Q et al (2012) Isolation and identification of native membrane glycoproteins from living cell by concanavalin A-magnetic particle conjugates. Anal Biochem 421:339–341PubMedCrossRefGoogle Scholar
  24. 24.
    Yamamoto K, Tsuji T, Osawa T (1998) Analysis of asparagine-linked oligosaccharides by sequential lectin-affinity chromatography. Methods Mol Biol 76:35–51PubMedGoogle Scholar
  25. 25.
    Yamamoto K, Tsuji T, Osawa T (1995) Analysis of asparagine-linked oligosaccharides by sequential lectin affinity chromatography. Mol Biotechnol 3:25–36PubMedCrossRefGoogle Scholar
  26. 26.
    Yang Z, Harris LE, Palmer-Toy DE et al (2006) Multilectin affinity chromatography for characterization of multiple glycoprotein biomarker candidates in serum from breast cancer patients. Clin Chem 52:1897–1905PubMedCrossRefGoogle Scholar
  27. 27.
    Li L, Wang L, Zhang W et al (2004) Correlation of serum VEGF levels with clinical stage, therapy efficacy, tumor metastasis and patient survival in ovarian cancer. Anticancer Res 24:1973–1979PubMedGoogle Scholar
  28. 28.
    Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85PubMedCrossRefGoogle Scholar
  29. 29.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254PubMedCrossRefGoogle Scholar
  30. 30.
    Hardman KD, Ainsworth CF (1972) Myo-inositol binding site of concanavalin A. Nature 237:54–55Google Scholar
  31. 31.
    Hardman KD, Ainsworth CF (1972) Structure of concanavalin A at 2.4-A resolution. Biochemistry 11:4910–4919PubMedCrossRefGoogle Scholar
  32. 32.
    Sumner JB (1919) The globulins of the jack bean, Canavalia ensiformis. J Biol Chem 37:137–142Google Scholar
  33. 33.
    Sumner JB, Howell SF (1936) Identification of hemagglutinin of jack bean with concanavalin A. J Bacteriol 32:227–237PubMedGoogle Scholar
  34. 34.
    Kornfeld K, Reitman ML, Kornfeld R (1981) The carbohydrate-binding specificity of pea and lentil lectins. Fucose is an important determinant. J Biol Chem 256:6633–6640PubMedGoogle Scholar
  35. 35.
    Shibuya N, Goldstein IJ, Van Damme EJ et al (1988) Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb. J Biol Chem 263: 728–734PubMedGoogle Scholar
  36. 36.
    Onozaki K, Homma Y, Hashimoto T (1979) Purification of an L-fucose binding lectin from Ulex europeus by affinity column chromatography. Experientia 35:1556–1557PubMedCrossRefGoogle Scholar
  37. 37.
    Kochibe N, Furukawa K (1980) Purification and properties of a novel fucose-specific hemagglutinin of Aleuria aurantia. Biochemistry 19:2841–2846PubMedCrossRefGoogle Scholar
  38. 38.
    Nicolson GL, Blaustein J, Etzler ME (1974) Characterization of two plant lectins from Ricinus communis and their quantitative interaction with a murine lymphoma. Biochemistry 13:196–204PubMedCrossRefGoogle Scholar
  39. 39.
    Nicolson GL, Blaustein J (1972) The interaction of Ricinus communis agglutinin with normal and tumor cell surfaces. Biochim Biophys Acta 266:543–547PubMedCrossRefGoogle Scholar
  40. 40.
    Farrar GH, Uhlenbruck G, Holz G (1980) Comparison of isolated peanut agglutinin receptor glycoproteins from human, bovine and porcine erythrocyte membranes. Biochim Biophys Acta 603:185–197PubMedCrossRefGoogle Scholar
  41. 41.
    Lotan R, Skutelsky E, Danon D et al (1975) The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J Biol Chem 250:8518–8523PubMedGoogle Scholar
  42. 42.
    Novogrodsky A, Lotan R, Ravid A et al (1975) Peanut agglutinin, a new mitogen that binds to galactosyl sites exposed after neuraminidase treatment. J Immunol 115:1243–1248PubMedGoogle Scholar
  43. 43.
    Bunn-Moreno MM, Campos-Neto A (1981) Lectin(s) extracted from seeds of Artocarpus integrifolia (jackfruit): potent and selective stimulator(s) of distinct human T and B cell functions. J Immunol 127:427–429PubMedGoogle Scholar
  44. 44.
    Grubhoffer L, Ticha M, Kocourek J (1981) Isolation and properties of a lectin from the seeds of hairy vetch (Vicia villosa Roth). Biochem J 195:623–626PubMedGoogle Scholar
  45. 45.
    Kimura A, Wigzell H, Holmquist G et al (1979) Selective affinity fractionation of murine cytotoxic T lymphocytes (CTL). Unique lectin specific binding of the CTL associated surface glycoprotein, T 145. J Exp Med 149:473–484PubMedCrossRefGoogle Scholar
  46. 46.
    Nagata Y, Burger MM (1974) Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J Biol Chem 249: 3116–3122PubMedGoogle Scholar
  47. 47.
    Nagata Y, Burger MM (1972) Wheat germ agglutinin. Isolation and crystallization. J Biol Chem 247:2248–2250PubMedGoogle Scholar
  48. 48.
    Shibuya N, Goldstein IJ, Broekaert WF et al (1987) The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. J Biol Chem 262: 1596–1601PubMedGoogle Scholar
  49. 49.
    Yamamoto K, Konami Y, Irimura T (1997) Sialic acid-binding motif of Maackia amurensis lectins. J Biochem 121:756–761PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Eliel Ruiz-May
    • 1
  • Carmen Catalá
    • 2
  • Jocelyn K. C. Rose
    • 1
  1. 1.Department of Plant BiologyCornell UniversityIthacaUSA
  2. 2.Boyce Thompson Institute for Plant Research, Department of Plant BiologyCornell UniversityIthacaUSA

Personalised recommendations