Identification of Chemosensory Receptor Genes from Vertebrate Genomes

  • Yoshihito Niimura
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1068)

Abstract

Chemical senses are essential for the survival of animals. In vertebrates, mainly three different types of receptors, olfactory receptors (ORs), vomeronasal receptors type 1 (V1Rs), and vomeronasal receptors type 2 (V2Rs), are responsible for the detection of chemicals in the environment. Mouse or rat genomes contain >1,000 OR genes, forming the largest multigene family in vertebrates, and have >100 V1R and V2R genes as well. Recent advancement in genome sequencing enabled us to computationally identify nearly complete repertories of OR, V1R, and V2R genes from various organisms, revealing that the numbers of these genes are highly variable among different organisms depending on each species’ living environment. Here I would explain bioinformatic methods to identify the entire repertoires of OR, V1R, and V2R genes from vertebrate genome sequences.

Key words

Olfactory receptor Vomeronasal receptor Multigene family Bioinformatics Vertebrate G protein-coupled receptor 

References

  1. 1.
    Nei M, Niimura Y, Nozawa M (2008) The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9:951–963PubMedCrossRefGoogle Scholar
  2. 2.
    Niimura Y (2012) Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr Genomics 13:103–114PubMedCrossRefGoogle Scholar
  3. 3.
    Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187PubMedCrossRefGoogle Scholar
  4. 4.
    Niimura Y, Nei M (2005) Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci USA 102:6039–6044PubMedCrossRefGoogle Scholar
  5. 5.
    Niimura Y (2009) On the origin and evolution of vertebrate olfactory receptor genes: Comparative genome analysis among 23 chordate species. Genome Biol Evol 1:34–44PubMedCrossRefGoogle Scholar
  6. 6.
    Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83:195–206PubMedCrossRefGoogle Scholar
  7. 7.
    Herrada G, Dulac C (1997) A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90:763–773PubMedCrossRefGoogle Scholar
  8. 8.
    Matsunami H, Buck LB (1997) A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90:775–784PubMedCrossRefGoogle Scholar
  9. 9.
    Ryba NJ, Tirindelli R (1997) A new multigene family of putative pheromone receptors. Neuron 19:371–379PubMedCrossRefGoogle Scholar
  10. 10.
    Saraiva LR, Korsching SI (2007) A novel olfactory receptor gene family in teleost fish. Genome Res 17:1448–1457PubMedCrossRefGoogle Scholar
  11. 11.
    Hashiguchi Y, Nishida M (2005) Evolution of vomeronasal-type odorant receptor genes in the zebrafish genome. Gene 362:19–28PubMedCrossRefGoogle Scholar
  12. 12.
    Niimura Y, Nei M (2007) Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS One 2:e708PubMedCrossRefGoogle Scholar
  13. 13.
    Hayden S, Bekaert M, Crider TA et al (2010) Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res 20:1–9PubMedCrossRefGoogle Scholar
  14. 14.
    Matsui A, Go Y, Niimura Y (2010) Degeneration of olfactory receptor gene repertories in primates: No direct link to full trichromatic vision. Mol Biol Evol 27:1192–1200PubMedCrossRefGoogle Scholar
  15. 15.
    Grus WE, Shi P, Zhang YP et al (2005) Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals. Proc Natl Acad Sci USA 102:5767–5772PubMedCrossRefGoogle Scholar
  16. 16.
    Young JM, Kambere M, Trask BJ et al (2005) Divergent V1R repertoires in five species: Amplification in rodents, decimation in primates, and a surprisingly small repertoire in dogs. Genome Res 15:231–240PubMedCrossRefGoogle Scholar
  17. 17.
    Shi P, Zhang J (2007) Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Res 17:166–174PubMedCrossRefGoogle Scholar
  18. 18.
    Young JM, Massa HF, Hsu L et al (2010) Extreme variability among mammalian V1R gene families. Genome Res 20:10–18PubMedCrossRefGoogle Scholar
  19. 19.
    Hashiguchi Y, Nishida M (2006) Evolution and origin of vomeronasal-type odorant receptor gene repertoire in fishes. BMC Evol Biol 6:76PubMedCrossRefGoogle Scholar
  20. 20.
    Young JM, Trask BJ (2007) V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet 23:212–215PubMedCrossRefGoogle Scholar
  21. 21.
    Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  22. 22.
    Katoh K, Kuma K, Toh H et al (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518PubMedCrossRefGoogle Scholar
  23. 23.
    Takezaki N, Rzhetsky A, Nei M (1995) Phylogenetic test of molecular clock and linearized trees. Mol Biol Evol 12:823–833PubMedGoogle Scholar
  24. 24.
    Eddy SR (2011) Accelerated Profile HMM Searches. PLoS Comput Biol 7:e1002195PubMedCrossRefGoogle Scholar
  25. 25.
    Birney E, Clamp M, Durbin R (2004) GeneWise and Genomewise. Genome Res 14:988–995PubMedCrossRefGoogle Scholar
  26. 26.
    Yang H, Shi P, Zhang YP et al (2005) Composition and evolution of the V2r vomeronasal receptor gene repertoire in mice and rats. Genomics 86:306–315PubMedCrossRefGoogle Scholar
  27. 27.
    Man O, Gilad Y, Lancet D (2004) Prediction of the odorant binding site of olfactory receptor proteins by human-mouse comparisons. Protein Sci 13:240–254PubMedCrossRefGoogle Scholar
  28. 28.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  29. 29.
    Go Y, Niimura Y (2008) Similar numbers but different repertoires of olfactory receptor genes in humans and chimpanzees. Mol Biol Evol 25:1897–1907PubMedCrossRefGoogle Scholar
  30. 30.
    Fredriksson R, Lagerström MC, Lundin LG et al (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Yoshihito Niimura
    • 1
  1. 1.Department of BioinformaticsMedical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations