Quantitative Assessment of Pheromone-Induced Dauer Formation in Caenorhabditis elegans

  • Scott J. Neal
  • Kyuhyung Kim
  • Piali Sengupta
Part of the Methods in Molecular Biology book series (MIMB, volume 1068)


Environmental conditions experienced during early larval stages dictate the developmental trajectory of the nematode C. elegans. Favorable conditions such as low population density, abundant food, and lower temperatures allow reproductive growth, while stressful conditions promote entry of second-stage (L2) larvae into the alternate dauer developmental stage. Population density is signaled by the concentration and composition of a complex mixture of small molecules that is produced by all stages of animals, and is collectively referred to as dauer pheromone; pheromone concentration is a major trigger for dauer formation. Here, we describe a quantitative dauer formation assay that provides a measure of the potency of single or mixtures of pheromone components in regulating this critical developmental decision.

Key words

Dauer larva Ascaroside C. elegans Pheromone 



Funding for this work was provided by the National Science Foundation (IOS 0842452 and IOS 1256488 to P.S.), the Human Frontiers Science Program (RGY0042/2010 to P.S.), and the DGIST Convergence Science Center Program of the Ministry of Education, Science and Technology (11-BD-04 to K.K.). S.J.N. was supported by a postgraduate scholarship (PGS-D3) from the Natural Sciences and Engineering Research Council of Canada and by the Brandeis National Committee.


  1. 1.
    Cassada RC, Russell RL (1975) The dauer larva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol 46:326–342PubMedCrossRefGoogle Scholar
  2. 2.
    Golden JW, Riddle DL (1982) A pheromone influences larval development in the nematode Caenorhabditis elegans. Science 218:578–580PubMedCrossRefGoogle Scholar
  3. 3.
    Golden JW, Riddle DL (1984) The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev Biol 102:368–378PubMedCrossRefGoogle Scholar
  4. 4.
    Golden JW, Riddle DL (1984) A Caenorhabditis elegans dauer-inducing pheromone and an antagonistic component of the food supply. J Chem Ecol 10:1265–1280CrossRefGoogle Scholar
  5. 5.
    Schaedel ON, Gerisch B, Antebi A, Sternberg PW (2012) Hormonal signal amplification mediates environmental conditions during development and controls an irreversible commitment to adulthood. PLoS Biol 10(4):e1001306PubMedCrossRefGoogle Scholar
  6. 6.
    Klass M, Hirsh D (1976) Non-ageing developmental variant of Caenorhabditis elegans. Nature 260:523–525PubMedCrossRefGoogle Scholar
  7. 7.
    Riddle DL, Swanson MM, Albert PS (1981) Interacting genes in nematode dauer larva formation. Nature 290:668–671PubMedCrossRefGoogle Scholar
  8. 8.
    Thomas JH, Birnby DA, Vowels JJ (1993) Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics 134:1105–1117PubMedGoogle Scholar
  9. 9.
    Vowels JJ, Thomas JH (1992) Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics 130:105–123PubMedGoogle Scholar
  10. 10.
    Riddle DL, Albert PS (1997) Genetic and environmental regulation of dauer larva development. In: Riddle DS, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans II. Cold Spring Harbor Press, Cold Spring Harbor, Plainview, NY, pp 739–768Google Scholar
  11. 11.
    Hu PJ (2007) Dauer. WormBook:1–19.
  12. 12.
    Albert PS, Riddle DL (1988) Mutants of Caenorhabditis elegans that form dauer-like larvae. Dev Biol 126:270–293PubMedCrossRefGoogle Scholar
  13. 13.
    Fielenbach N, Antebi A (2008) C. elegans dauer formation and the molecular basis of plasticity. Genes Dev 22:2149–2165PubMedCrossRefGoogle Scholar
  14. 14.
    Butcher RA, Fujita M, Schroeder FC, Clardy J (2007) Small molecule signaling of dauer formation in C. elegans. Nat Chem Biol 3:420–422PubMedCrossRefGoogle Scholar
  15. 15.
    Butcher RA, Ragains JR, Kim E, Clardy J (2008) A potent dauer pheromone component in Caenorhabditis elegans that acts synergistically with other components. Proc Natl Acad Sci U S A 105:14288–14292PubMedCrossRefGoogle Scholar
  16. 16.
    Butcher RA, Ragains JR, Clardy J (2009) An indole-containing dauer pheromone component with unusual dauer inhibitory activity at higher concentrations. Org Lett 11:3100–3103PubMedCrossRefGoogle Scholar
  17. 17.
    Srinivasan J, von Reuss SH, Bose N, Zaslaver A, Mahanti P, Ho MC, O’Doherty OG, Edison AS, Sternberg PW, Schroeder FC (2012) A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS Biol 10:e1001237PubMedCrossRefGoogle Scholar
  18. 18.
    Pungaliya C, Srinivasan J, Fox BW, Malik RU, Ludewig AH, Sternberg PW, Schroeder FC (2009) A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans. Proc Natl Acad Sci U S A 106:7708–7713PubMedCrossRefGoogle Scholar
  19. 19.
    Jeong PY, Jung M, Yim YH, Kim H, Park M, Hong E, Lee W, Kim YH, Kim K, Paik YK (2005) Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433:541–545PubMedCrossRefGoogle Scholar
  20. 20.
    von Reuss SH, Bose N, Srinivasan J, Yim JJ, Judkins JC, Sternberg PW, Schroeder FC (2012) Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. J Am Chem Soc 134:1817–1824CrossRefGoogle Scholar
  21. 21.
    Ailion M, Thomas JH (2000) Dauer formation induced by high temperatures in Caenorhabditis elegans. Genetics 156:1047–1067PubMedGoogle Scholar
  22. 22.
    Lee J, Kim KY, Joo HJ, Kim H, Jeong PY, Paik YK (2011) Methods for evaluating the Caenorhabditis elegans dauer state: standard dauer-formation assay using synthetic daumones and proteomic analysis of O-GlcNAc modifications. Methods Cell Biol 106:445–460PubMedCrossRefGoogle Scholar
  23. 23.
    Gu SG, Pak J, Guang S, Maniar JM, Kennedy S, Fire A (2012) Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint. Nat Genet 44:157–164PubMedCrossRefGoogle Scholar
  24. 24.
    Rechavi O, Minevich G, Hobert O (2011) Transgenerational inheritance of an acquired small RNA-based antiviral response in C. elegans. Cell 147:1248–1256PubMedCrossRefGoogle Scholar
  25. 25.
    Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, Shi Y, Brunet A (2011) Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479:365–371PubMedCrossRefGoogle Scholar
  26. 26.
    Katz DJ, Edwards TM, Reinke V, Kelly WG (2009) A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137:308–320PubMedCrossRefGoogle Scholar
  27. 27.
    Johnson TE, Mitchell DH, Kline S, Kemal R, Foy J (1984) Arresting development arrests aging in the nematode Caenorhabditis elegans. Mech Ageing Dev 28:23–40PubMedCrossRefGoogle Scholar
  28. 28.
    Swanson MM, Riddle DL (1981) Critical periods in the development of the Caenorhabditis elegans dauer larva. Dev Biol 84:27–40PubMedCrossRefGoogle Scholar
  29. 29.
    Popham JD, Webster JM (1979) Aspects of the fine structure of the dauer larva of the nematode Caenorhabditis elegans. Can J Zool 57:794–800CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Scott J. Neal
    • 1
  • Kyuhyung Kim
    • 2
  • Piali Sengupta
    • 1
    • 3
  1. 1.Department of BiologyBrandeis UniversityWalthamUSA
  2. 2.Department of Brain ScienceDaegu Gyeongbuk Institute of Science and Technology (DGIST)DaeguSouth Korea
  3. 3.National Center for Behavioral GenomicsBrandeis UniversityWalthamUSA

Personalised recommendations