Isolation and Forward Genetic Analysis of Developmental Genes in Pea

  • James L. Weller
  • Valérie F. G. Hecht
  • Frances C. Sussmilch
Part of the Methods in Molecular Biology book series (MIMB, volume 1069)


Understanding of developmental processes relies heavily on isolation and functional characterization of relevant genes. The garden pea (Pisum sativum L.) is one of the classic model species in plant genetics and has been used for a wide range of physiological and molecular studies of plant development. Here we describe the resources and approaches available for isolation of genes and genetic characterization of loci affecting development in pea.

Key words

Garden pea Gene isolation Mapping Markers Plant development Gene function 


  1. 1.
    Franssen SU et al (2011) Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genomics 12:227PubMedCrossRefGoogle Scholar
  2. 2.
    Kaur S et al (2012) Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genomics 13:104PubMedCrossRefGoogle Scholar
  3. 3.
    Rose TM et al (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res 26:1637–1644CrossRefGoogle Scholar
  4. 4.
    Hecht V et al (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol 137:1420–1434PubMedCrossRefGoogle Scholar
  5. 5.
    Coyne CJ et al (2007) Construction and characterization of two bacterial artificial chromosome libraries of pea (Pisum sativum L.) for the isolation of economically important genes. Genome 50:871–875PubMedCrossRefGoogle Scholar
  6. 6.
    Hofer J et al (2009) Tendril-less regulates tendril formation in pea leaves. Plant Cell 21:420–428PubMedCrossRefGoogle Scholar
  7. 7.
    Bordat A et al (2011) Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. G3 (Bethesda) 1:93–103CrossRefGoogle Scholar
  8. 8.
    Weller JL et al (2012) A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc Natl Acad Sci U S A 109:21158–21163PubMedCrossRefGoogle Scholar
  9. 9.
    Smykal P et al (2012) Pea (Pisum sativum L.) in the genomic era. Agronomy 2:74–115CrossRefGoogle Scholar
  10. 10.
    Deulvot C et al (2010) Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea. BMC Genomics 11:468PubMedCrossRefGoogle Scholar
  11. 11.
    Laucou V et al (1998) Genetic mapping in pea. 1. RAPD-based genetic linkage map of Pisum sativum. Theor Appl Genet 97:905–915CrossRefGoogle Scholar
  12. 12.
    Gilpin BJ et al (1997) A linkage map of the pea (Pisum sativum L.) genome containing cloned sequences of known function and expressed sequence tags (ESTs). Theor Appl Genet 95: 1289–1299CrossRefGoogle Scholar
  13. 13.
    McPhee KE et al (2012) Mapping QTL for Fusarium wilt race 2 partial resistance in pea (Pisum sativum). Plant Breed 131:300–306CrossRefGoogle Scholar
  14. 14.
    Tar’an B et al (2003) Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet 107: 1482–1491PubMedCrossRefGoogle Scholar
  15. 15.
    Bourion V et al (2010) Genetic dissection of nitrogen nutrition in pea through a QTL approach of root, nodule, and shoot variability. Theor Appl Genet 121:71–86PubMedCrossRefGoogle Scholar
  16. 16.
    Ellis THN et al (1992) Linkage maps in pea. Genetics 130:649–663PubMedGoogle Scholar
  17. 17.
    Lejeune-Hénaut I et al (2008) The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L. Theor Appl Genet 116:1105–1116PubMedCrossRefGoogle Scholar
  18. Prioul S et al (2004) Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea ( Pisum sativum L.), at the seedling and adult plant stages. Theor Appl Genet 108:1322–1334PubMedCrossRefGoogle Scholar
  19. 19.
    Weeden NF et al (1998) A consensus linkage map for Pisum sativum. Pisum Genet 30:1–4Google Scholar
  20. 20.
    Davey JW et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12: 499–510PubMedCrossRefGoogle Scholar
  21. 21.
    Kilian A et al (2012) Diversity arrays technology: a generic genome profiling technology on open platforms. Methods Mol Biol 888:67–89PubMedCrossRefGoogle Scholar
  22. 22.
    Sidorova KK, Shumnyi VK (2003) Creation and genetic study of a collection of symbiotic mutants of the pea (Pisum sativum L.). Genetika 39:501–509PubMedGoogle Scholar
  23. 23.
    Hecht V et al (2007) Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiol 144:648–661PubMedCrossRefGoogle Scholar
  24. 24.
    Platten JD et al (2005) Cryptochrome 1 contributes to blue-light sensing in pea. Plant Physiol 139:1472–1482PubMedCrossRefGoogle Scholar
  25. 25.
    Weller JL, Murfet IC, Reid JB (1997) Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection. Plant Physiol 114: 1225–1236PubMedGoogle Scholar
  26. 26.
    Rameau C et al (1997) New ramosus mutants at loci Rms1, Rms3 and Rms4 resulting from the mutation breeding program at Versailles. Pisum Genet 29:7–12Google Scholar
  27. 27.
    Triques K et al (2008) Mutation detection using ENDO1: application to disease diagnostics in humans and TILLING and Eco-TILLING in plants. BMC Mol Biol 9:42PubMedCrossRefGoogle Scholar
  28. 28.
    Duc G, Messager A (1989) Mutagenesis of pea (Pisum sativum L.) and the isolation of mutants for nodulation and nitrogen fixation. Plant Sci 60:207–213CrossRefGoogle Scholar
  29. 29.
    Borisov AY et al (1992) New symbiotic mutants of pea (Pisum sativum L.) affecting wither nodule initiation or symbiosome development. Symbiosis 14:297–313Google Scholar
  30. 30.
    Tsyganov VE et al (1994) New symbiotic mutants of pea obtained after mutagenesis of line SGE. Pisum Genet 26:36–37Google Scholar
  31. 31.
    Wang Z et al (2008) Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proc Natl Acad Sci U S A 105:10414–10419PubMedCrossRefGoogle Scholar
  32. 32.
    Koornneef M, Alonso-Blanco C, Stam P (1998) Genetic analysis. Methods Mol Biol 82:105–117PubMedGoogle Scholar
  33. 33.
    Humphry M et al (2011) Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol 12: 866–878PubMedCrossRefGoogle Scholar
  34. 34.
    Moreau C et al (2012) The B gene of pea encodes a defective flavonoid 3′,5′-hydroxylase, and confers pink flower color. Plant Physiol 159:759–768PubMedCrossRefGoogle Scholar
  35. 35.
    Liew LC et al (2009) DIE NEUTRALIS and LATE BLOOMER 1 contribute to regulation of the pea circadian clock. Plant Cell 21: 3198–3211PubMedCrossRefGoogle Scholar
  36. 36.
    Couzigou JM et al (2012) NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of Arabidopsis BLADE-ON-PETIOLE genes. Plant Cell 24: 4498–44510PubMedCrossRefGoogle Scholar
  37. Zhuang LL et al (2012) LATHYROIDES, encoding a WUSCHEL-related Homeobox1 transcription factor, controls organ lateral growth, and regulates tendril and dorsal petal identities in garden pea Pisum sativum L.). Mol Plant 5:1333–1345PubMedCrossRefGoogle Scholar
  38. 38.
    Hellens RP et al (2010) Identification of Mendel’s white flower character. PLoS One 5:e13230PubMedCrossRefGoogle Scholar
  39. 39.
    Foucher F et al (2003) DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15:2742–2754PubMedCrossRefGoogle Scholar
  40. Krusell L et al (2011) The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation. Plant J 65:861–871PubMedCrossRefGoogle Scholar
  41. 41.
    Ovchinnikova E et al (2011) IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago Spp. Mol Plant Microbe Interact 24:1333–1344PubMedCrossRefGoogle Scholar
  42. 42.
    Hecht V et al (2011) The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell 23:147–161PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • James L. Weller
    • 1
  • Valérie F. G. Hecht
    • 1
  • Frances C. Sussmilch
    • 1
  1. 1.School of Plant ScienceUniversity of TasmaniaHobartAustralia

Personalised recommendations