Gene Targeting in Mice: A Review

  • Hicham Bouabe
  • Klaus Okkenhaug
Part of the Methods in Molecular Biology book series (MIMB, volume 1064)


The ability to introduce DNA sequences (e.g., genes) of interest into the germline genome has rendered the mouse a powerful and indispensable experimental model in fundamental and medical research. The DNA sequences can be integrated into the genome randomly or into a specific locus by homologous recombination, in order to: (1) delete or insert mutations into genes of interest to determine their function, (2) introduce human genes into the genome of mice to generate animal models enabling study of human-specific genes and diseases, e.g., mice susceptible to infections by human-specific pathogens of interest, (3) introduce individual genes or genomes of pathogens (such as viruses) in order to examine the contributions of such genes to the pathogenesis of the parent pathogens, (4) and last but not least introduce reporter genes that allow monitoring in vivo or ex vivo the expression of genes of interest. Furthermore, the use of recombination systems, such as Cre/loxP or FRT/FLP, enables conditional induction or suppression of gene expression of interest in a restricted period of mouse’s lifetime, in a particular cell type, or in a specific tissue. In this review, we will give an updated summary of the gene targeting technology and discuss some important considerations in the design of gene-targeted mice.

Key words

Gene targeting Transgenic mice Knockout mice Reporter mice ES cell lines Targeting vector Cre/loxP FRT/FLP MultiSite Gateway Cloning 



Work in our laboratory is supported by grants from the BBSRC and the Wellcome Trust.


  1. 1.
    Bot A, Casares S, Bot S, von Boehmer H, Bona C (1998) Cellular mechanisms involved in protection against influenza virus infection in transgenic mice expressing a TCR receptor specific for class II hemagglutinin peptide in CD4+ and CD8+ T cells. J Immunol 160:4500–4507PubMedGoogle Scholar
  2. 2.
    Kirberg J, Baron A, Jakob S, Rolink A, Karjalainen K, von Boehmer H (1994) Thymic selection of CD8+ single positive cells with a class II major histocompatibility complex-restricted receptor. J Exp Med 180:25–34PubMedGoogle Scholar
  3. 3.
    Oxenius A, Bachmann MF, Zinkernagel RM, Hengartner H (1998) Virus-specific MHC-class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. Eur J Immunol 28:390–400PubMedGoogle Scholar
  4. 4.
    Pircher H, Burki K, Lang R, Hengartner H, Zinkernagel RM (1989) Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342:559–561PubMedGoogle Scholar
  5. 5.
    Rall GF, Lawrence DM, Patterson CE (2000) The application of transgenic and knockout mouse technology for the study of viral pathogenesis. Virology 271:220–226PubMedGoogle Scholar
  6. 6.
    Mador N, Braun E, Haim H, Ariel I, Panet A, Steiner I (2003) Transgenic mouse with the herpes simplex virus type 1 latency-associated gene: expression and function of the transgene. J Virol 77:12421–12429PubMedCentralPubMedGoogle Scholar
  7. 7.
    Wang K, Pesnicak L, Guancial E, Krause PR, Straus SE (2001) The 2.2-kilobase latency-associated transcript of herpes simplex virus type 2 does not modulate viral replication, reactivation, or establishment of latency in transgenic mice. J Virol 75:8166–8172PubMedCentralPubMedGoogle Scholar
  8. 8.
    Mombaerts P, Clarke AR, Rudnicki MA, Iacomini J, Itohara S, Lafaille JJ, Wang L, Ichikawa Y, Jaenisch R, Hooper ML et al (1992) Mutations in T-cell antigen receptor genes alpha and beta block thymocyte development at different stages. Nature 360:225–231PubMedGoogle Scholar
  9. 9.
    Kitamura D, Roes J, Kuhn R, Rajewsky K (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350:423–426PubMedGoogle Scholar
  10. 10.
    Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68:869–877PubMedGoogle Scholar
  11. 11.
    Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM et al (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68:855–867PubMedGoogle Scholar
  12. 12.
    Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA (1993) Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259:1739–1742PubMedGoogle Scholar
  13. 13.
    Hwang SY, Hertzog PJ, Holland KA, Sumarsono SH, Tymms MJ, Hamilton JA, Whitty G, Bertoncello I, Kola I (1995) A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses. Proc Natl Acad Sci USA 92:11284–11288PubMedGoogle Scholar
  14. 14.
    Steinhoff U, Muller U, Schertler A, Hengartner H, Aguet M, Zinkernagel RM (1995) Antiviral protection by vesicular stomatitis virus-specific antibodies in alpha/beta interferon receptor-deficient mice. J Virol 69:2153–2158PubMedCentralPubMedGoogle Scholar
  15. 15.
    Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M (1994) Functional role of type I and type II interferons in antiviral defense. Science 264:1918–1921PubMedGoogle Scholar
  16. 16.
    Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21:317–337PubMedGoogle Scholar
  17. 17.
    Moresco EM, Beutler B (2011) Resisting viral infection: the gene by gene approach. Curr Opin Virol 1:513–518PubMedGoogle Scholar
  18. 18.
    Brennan K, Bowie AG (2010) Activation of host pattern recognition receptors by viruses. Curr Opin Microbiol 13:503–507PubMedGoogle Scholar
  19. 19.
    Hardison SE, Brown GD (2012) C-type lectin receptors orchestrate antifungal immunity. Nat Immunol 13:817–822PubMedCentralPubMedGoogle Scholar
  20. 20.
    Meraz MA, White JM, Sheehan KC, Bach EA, Rodig SJ, Dighe AS, Kaplan DH, Riley JK, Greenlund AC, Campbell D et al (1996) Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84:431–442PubMedGoogle Scholar
  21. 21.
    Akira S (1999) Functional roles of STAT family proteins: lessons from knockout mice. Stem Cells 17:138–146PubMedGoogle Scholar
  22. 22.
    Matsuyama T, Kimura T, Kitagawa M, Pfeffer K, Kawakami T, Watanabe N, Kundig TM, Amakawa R, Kishihara K, Wakeham A et al (1993) Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 75:83–97PubMedGoogle Scholar
  23. 23.
    Croxford AL, Buch T (2011) Cytokine reporter mice in immunological research: perspectives and lessons learned. Immunology 132:1–8PubMedGoogle Scholar
  24. 24.
    Bouabe H (2012) Cytokine reporter mice: the special case of IL-10. Scand J Immunol 75:553–567PubMedGoogle Scholar
  25. 25.
    Luker KE, Luker GD (2010) Bioluminescence imaging of reporter mice for studies of infection and inflammation. Antiviral Res 86:93–100PubMedCentralPubMedGoogle Scholar
  26. 26.
    Lienenklaus S, Cornitescu M, Zietara N, Lyszkiewicz M, Gekara N, Jablonska J, Edenhofer F, Rajewsky K, Bruder D, Hafner M et al (2009) Novel reporter mouse reveals constitutive and inflammatory expression of IFN-beta in vivo. J Immunol 183:3229–3236PubMedGoogle Scholar
  27. 27.
    Jaenisch R (1976) Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc Natl Acad Sci USA 73:1260–1264PubMedGoogle Scholar
  28. 28.
    Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384PubMedGoogle Scholar
  29. 29.
    Costantini F, Lacy E (1981) Introduction of a rabbit beta-globin gene into the mouse germ line. Nature 294:92–94PubMedGoogle Scholar
  30. 30.
    Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD (1981) Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27:223–231PubMedGoogle Scholar
  31. 31.
    Wagner EF, Stewart TA, Mintz B (1981) The human beta-globin gene and a functional viral thymidine kinase gene in developing mice. Proc Natl Acad Sci USA 78:5016–5020PubMedGoogle Scholar
  32. 32.
    Harbers K, Jahner D, Jaenisch R (1981) Microinjection of cloned retroviral genomes into mouse zygotes: integration and expression in the animal. Nature 293:540–542PubMedGoogle Scholar
  33. 33.
    De Deyn PP, Van Dam D (2011) Animal models of dementia. In: Conlon RA (ed) Transgenic and gene targeted models of dementia, vol 48. Springer Science + Business Media, New York, pp 77–90Google Scholar
  34. 34.
    Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O (1987) Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330:576–578PubMedGoogle Scholar
  35. 35.
    Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512PubMedGoogle Scholar
  36. 36.
    Thompson S, Clarke AR, Pow AM, Hooper ML, Melton DW (1989) Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56:313–321PubMedGoogle Scholar
  37. 37.
    Zijlstra M, Li E, Sajjadi F, Subramani S, Jaenisch R (1989) Germ-line transmission of a disrupted beta 2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 342:435–438PubMedGoogle Scholar
  38. 38.
    Folger KR, Wong EA, Wahl G, Capecchi MR (1982) Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol Cell Biol 2:1372–1387PubMedCentralPubMedGoogle Scholar
  39. 39.
    Folger K, Thomas K, Capecchi MR (1984) Analysis of homologous recombination in cultured mammalian cells. Cold Spring Harb Symp Quant Biol 49:123–138PubMedGoogle Scholar
  40. 40.
    Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317:230–234PubMedGoogle Scholar
  41. 41.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedGoogle Scholar
  42. 42.
    Robertson E, Bradley A, Kuehn M, Evans M (1986) Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323:445–448PubMedGoogle Scholar
  43. 43.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638PubMedGoogle Scholar
  44. 44.
    Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348–352PubMedGoogle Scholar
  45. 45.
    Koller BH, Hagemann LJ, Doetschman T, Hagaman JR, Huang S, Williams PJ, First NL, Maeda N, Smithies O (1989) Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci USA 86:8927–8931PubMedGoogle Scholar
  46. 46.
    Thomas KR, Capecchi MR (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346:847–850PubMedGoogle Scholar
  47. 47.
    Young RA (2011) Control of the embryonic stem cell state. Cell 144:940–954PubMedCentralPubMedGoogle Scholar
  48. 48.
    Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63PubMedGoogle Scholar
  49. 49.
    Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523PubMedGoogle Scholar
  50. 50.
    Domogatskaya A, Rodin S, Boutaud A, Tryggvason K (2008) Laminin-511 but not -332, -111, or -411 enables mouse embryonic stem cell self-renewal in vitro. Stem Cells 26:2800–2809PubMedGoogle Scholar
  51. 51.
    Downing GJ, Battey JF Jr (2004) Technical assessment of the first 20 years of research using mouse embryonic stem cell lines. Stem Cells 22:1168–1180PubMedGoogle Scholar
  52. 52.
    Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 16:19–27PubMedGoogle Scholar
  53. 53.
    Hooper M, Hardy K, Handyside A, Hunter S, Monk M (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326:292–295PubMedGoogle Scholar
  54. 54.
    Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45PubMedGoogle Scholar
  55. 55.
    Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926PubMedGoogle Scholar
  56. 56.
    Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90:8424–8428PubMedGoogle Scholar
  57. 57.
    Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702PubMedGoogle Scholar
  58. 58.
    Hansen GM, Markesich DC, Burnett MB, Zhu Q, Dionne KM, Richter LJ, Finnell RH, Sands AT, Zambrowicz BP, Abuin A (2008) Large-scale gene trapping in C57BL/6N mouse embryonic stem cells. Genome Res 18:1670–1679PubMedGoogle Scholar
  59. 59.
    Keskintepe L, Norris K, Pacholczyk G, Dederscheck SM, Eroglu A (2007) Derivation and comparison of C57BL/6 embryonic stem cells to a widely used 129 embryonic stem cell line. Transgenic Res 16:751–758PubMedGoogle Scholar
  60. 60.
    Seong E, Saunders TL, Stewart CL, Burmeister M (2004) To knockout in 129 or in C57BL/6: that is the question. Trends Genet 20:59–62PubMedGoogle Scholar
  61. 61.
    Pettitt SJ, Liang Q, Rairdan XY, Moran JL, Prosser HM, Beier DR, Lloyd KC, Bradley A, Skarnes WC (2009) Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat Methods 6:493–495PubMedCentralPubMedGoogle Scholar
  62. 62.
    Tanimoto Y, Iijima S, Hasegawa Y, Suzuki Y, Daitoku Y, Mizuno S, Ishige T, Kudo T, Takahashi S, Kunita S et al (2008) Embryonic stem cells derived from C57BL/6J and C57BL/6N mice. Comp Med 58:347–352PubMedGoogle Scholar
  63. 63.
    Ledermann B, Burki K (1991) Establishment of a germ-line competent C57BL/6 embryonic stem cell line. Exp Cell Res 197:254–258PubMedGoogle Scholar
  64. 64.
    Kontgen F, Suss G, Stewart C, Steinmetz M, Bluethmann H (1993) Targeted disruption of the MHC class II Aa gene in C57BL/6 mice. Int Immunol 5:957–964PubMedGoogle Scholar
  65. 65.
    Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T et al (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474:337–342PubMedCentralPubMedGoogle Scholar
  66. 66.
    Hughes ED, Qu YY, Genik SJ, Lyons RH, Pacheco CD, Lieberman AP, Samuelson LC, Nasonkin IO, Camper SA, Van Keuren ML et al (2007) Genetic variation in C57BL/6 ES cell lines and genetic instability in the Bruce4 C57BL/6 ES cell line. Mamm Genome 18:549–558PubMedGoogle Scholar
  67. 67.
    Longenecker G, Kulkarni AB (2009) Generation of gene knockout mice by ES cell microinjection. Curr Protoc Cell Biol Chapter 19:Unit 19.14 19.14.11–36Google Scholar
  68. 68.
    Pluck A, Klasen C (2009) Generation of chimeras by microinjection. Methods Mol Biol 561:199–217PubMedGoogle Scholar
  69. 69.
    Pluck A, Klasen C (2009) Generation of chimeras by morula aggregation. Methods Mol Biol 561:219–229PubMedGoogle Scholar
  70. 70.
    Meier ID, Bernreuther C, Tilling T, Neidhardt J, Wong YW, Schulze C, Streichert T, Schachner M (2010) Short DNA sequences inserted for gene targeting can accidentally interfere with off-target gene expression. FASEB J 24:1714–1724PubMedGoogle Scholar
  71. 71.
    Pham CT, MacIvor DM, Hug BA, Heusel JW, Ley TJ (1996) Long-range disruption of gene expression by a selectable marker cassette. Proc Natl Acad Sci USA 93:13090–13095PubMedGoogle Scholar
  72. 72.
    Revell PA, Grossman WJ, Thomas DA, Cao X, Behl R, Ratner JA, Lu ZH, Ley TJ (2005) Granzyme B and the downstream granzymes C and/or F are important for cytotoxic lymphocyte functions. J Immunol 174:2124–2131PubMedGoogle Scholar
  73. 73.
    Jasin M, Berg P (1988) Homologous integration in mammalian cells without target gene selection. Genes Dev 2:1353–1363PubMedGoogle Scholar
  74. 74.
    Deng C, Capecchi MR (1992) Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol Cell Biol 12:3365–3371PubMedCentralPubMedGoogle Scholar
  75. 75.
    Hasty P, Rivera-Perez J, Bradley A (1991) The length of homology required for gene targeting in embryonic stem cells. Mol Cell Biol 11:5586–5591PubMedCentralPubMedGoogle Scholar
  76. 76.
    te Riele H, Maandag ER, Berns A (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc Natl Acad Sci USA 89:5128–5132Google Scholar
  77. 77.
    Thomas KR, Folger KR, Capecchi MR (1986) High frequency targeting of genes to specific sites in the mammalian genome. Cell 44:419–428PubMedGoogle Scholar
  78. 78.
    Yagi T, Ikawa Y, Yoshida K, Shigetani Y, Takeda N, Mabuchi I, Yamamoto T, Aizawa S (1990) Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc Natl Acad Sci USA 87:9918–9922PubMedGoogle Scholar
  79. 79.
    Mortensen R (2006) Overview of gene targeting by homologous recombination. Curr Protoc Mol Biol Chapter 23:Unit 23.21Google Scholar
  80. 80.
    Bouabe H, Moser M, Heesemann J (2011) Enhanced selection for homologous-recombinant embryonic stem cell clones by Cre recombinase-mediated deletion of the positive selection marker. Transgenic Res. doi: 10.1007/s11248-011-9522-x PubMedGoogle Scholar
  81. 81.
    Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150:467–486PubMedGoogle Scholar
  82. 82.
    Hoess RH, Ziese M, Sternberg N (1982) P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci USA 79:3398–3402PubMedGoogle Scholar
  83. 83.
    Abremski K, Wierzbicki A, Frommer B, Hoess RH (1986) Bacteriophage P1 Cre-loxP site-specific recombination. Site-specific DNA topoisomerase activity of the Cre recombination protein. J Biol Chem 261:391–396PubMedGoogle Scholar
  84. 84.
    Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci USA 89:6861–6865PubMedGoogle Scholar
  85. 85.
    Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265:103–106PubMedGoogle Scholar
  86. 86.
    Albanese C, Hulit J, Sakamaki T, Pestell RG (2002) Recent advances in inducible expression in transgenic mice. Semin Cell Dev Biol 13:129–141PubMedGoogle Scholar
  87. 87.
    Lakso M, Sauer B, Mosinger B Jr, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA 89:6232–6236PubMedGoogle Scholar
  88. 88.
    Torres RM, Kühn R (2003) Laboratory protocols for conditional gene targeting. Oxford Uninversity Press, New YorkGoogle Scholar
  89. 89.
    Wakita T, Taya C, Katsume A, Kato J, Yonekawa H, Kanegae Y, Saito I, Hayashi Y, Koike M, Kohara M (1998) Efficient conditional transgene expression in hepatitis C virus cDNA transgenic mice mediated by the Cre/loxP system. J Biol Chem 273:9001–9006PubMedGoogle Scholar
  90. 90.
    Andrews BJ, Proteau GA, Beatty LG, Sadowski PD (1985) The FLP recombinase of the 2 micron circle DNA of yeast: interaction with its target sequences. Cell 40:795–803PubMedGoogle Scholar
  91. 91.
    Dymecki SM (1996) Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc Natl Acad Sci USA 93:6191–6196PubMedGoogle Scholar
  92. 92.
    Senecoff JF, Bruckner RC, Cox MM (1985) The FLP recombinase of the yeast 2-micron plasmid: characterization of its recombination site. Proc Natl Acad Sci USA 82:7270–7274PubMedGoogle Scholar
  93. 93.
    Broach JR, Guarascio VR, Jayaram M (1982) Recombination within the yeast plasmid 2mu circle is site-specific. Cell 29:227–234PubMedGoogle Scholar
  94. 94.
    Buchholz F, Angrand PO, Stewart AF (1998) Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16:657–662PubMedGoogle Scholar
  95. 95.
    Buchholz F, Ringrose L, Angrand PO, Rossi F, Stewart AF (1996) Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res 24:4256–4262PubMedCentralPubMedGoogle Scholar
  96. 96.
    Bult CJ, Eppig JT, Blake JA, Kadin JA, Richardson JE (2013) The mouse genome database: genotypes, phenotypes, and models of human disease. Nucleic Acids Res 41:D885–D891PubMedCentralPubMedGoogle Scholar
  97. 97.
    Friedrich G, Soriano P (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5:1513–1523PubMedGoogle Scholar
  98. 98.
    Zambrowicz BP, Imamoto A, Fiering S, Herzenberg LA, Kerr WG, Soriano P (1997) Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci USA 94:3789–3794PubMedGoogle Scholar
  99. 99.
    Saveliev A, Tybulewicz VL (2009) Lymphocyte signaling: beyond knockouts. Nat Immunol 10:361–364PubMedGoogle Scholar
  100. 100.
    Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S, Peskett E, Pearce W, Meek SE, Salpekar A, Waterfield MD et al (2002) Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 297:1031–1034PubMedGoogle Scholar
  101. 101.
    Patrucco E, Notte A, Barberis L, Selvetella G, Maffei A, Brancaccio M, Marengo S, Russo G, Azzolino O, Rybalkin SD et al (2004) PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118:375–387PubMedGoogle Scholar
  102. 102.
    Suire S, Condliffe AM, Ferguson GJ, Ellson CD, Guillou H, Davidson K, Welch H, Coadwell J, Turner M, Chilvers ER et al (2006) Gbetagammas and the Ras binding domain of p110gamma are both important regulators of PI(3)Kgamma signalling in neutrophils. Nat Cell Biol 8:1303–1309PubMedGoogle Scholar
  103. 103.
    Saveliev A, Vanes L, Ksionda O, Rapley J, Smerdon SJ, Rittinger K, Tybulewicz VL (2009) Function of the nucleotide exchange activity of vav1 in T cell development and activation. Sci Signal 2:ra83PubMedCentralPubMedGoogle Scholar
  104. 104.
    Prisco A, Vanes L, Ruf S, Trigueros C, Tybulewicz VL (2005) Lineage-specific requirement for the PH domain of Vav1 in the activation of CD4+ but not CD8+ T cells. Immunity 23:263–274PubMedGoogle Scholar
  105. 105.
    Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544PubMedGoogle Scholar
  106. 106.
    Bouabe H, Liu Y, Moser M, Bosl MR, Heesemann J (2011) Novel highly sensitive IL-10-{beta}-lactamase reporter mouse reveals cells of the innate immune system as a substantial source of IL-10 in vivo. J Immunol 187:3165–3176PubMedGoogle Scholar
  107. 107.
    Bronstein I, Martin CS, Fortin JJ, Olesen CE, Voyta JC (1996) Chemiluminescence: sensitive detection technology for reporter gene assays. Clin Chem 42:1542–1546PubMedGoogle Scholar
  108. 108.
    Campbell RE (2004) Realization of beta-lactamase as a versatile fluorogenic reporter. Trends Biotechnol 22:208–211PubMedGoogle Scholar
  109. 109.
    Bradley A, Anastassiadis K, Ayadi A, Battey JF, Bell C, Birling MC, Bottomley J, Brown SD, Burger A, Bult CJ et al (2012) The mammalian gene function resource: the international knockout mouse consortium. Mamm Genome 23(9–10):580–586PubMedCentralPubMedGoogle Scholar
  110. 110.
    Prosser HM, Koike-Yusa H, Cooper JD, Law FC, Bradley A (2011) A resource of vectors and ES cells for targeted deletion of microRNAs in mice. Nat Biotechnol 29:840–845PubMedCentralPubMedGoogle Scholar
  111. 111.
    Kain SR, Ganguly S (2001) Overview of genetic reporter systems. Curr Protoc Mol Biol Chapter 9:Unit9.6Google Scholar
  112. 112.
    Jiang T, Xing B, Rao J (2008) Recent developments of biological reporter technology for detecting gene expression. Biotechnol Genet Eng Rev 25:41–75PubMedGoogle Scholar
  113. 113.
    Olesen CE, Voyta JC, Bronstein I (1997) Chemiluminescent immunoassay for the detection of chloramphenicol acetyltransferase and human growth hormone reporter proteins. Methods Mol Biol 63:71–76PubMedGoogle Scholar
  114. 114.
    Qureshi SA (2007) Beta-lactamase: an ideal reporter system for monitoring gene expression in live eukaryotic cells. Biotechniques 42:91–96PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Hicham Bouabe
    • 1
  • Klaus Okkenhaug
    • 1
  1. 1.Laboratory of Lymphocyte Signalling and DevelopmentBabraham InstituteCambridgeUK

Personalised recommendations