Immunoproteomics: Current Technology and Applications

  • Kelly M. Fulton
  • Susan M. Twine
Part of the Methods in Molecular Biology book series (MIMB, volume 1061)


The varied landscape of the adaptive immune response is determined by the peptides presented by immune cells, derived from viral or microbial pathogens or cancerous cells. The study of immune biomarkers or antigens is not new and classical methods such as agglutination, enzyme-linked immunosorbent assay, or Western blotting have been used for many years to study the immune response to vaccination or disease. However, in many of these traditional techniques, protein or peptide identification has often been the bottleneck. Recent advances in genomics and proteomics, has led to many of the rapid advances in proteomics approaches. Immunoproteomics describes a rapidly growing collection of approaches that have the common goal of identifying and measuring antigenic peptides or proteins. This includes gel based, array based, mass spectrometry, DNA based, or in silico approaches. Immunoproteomics is yielding an understanding of disease and disease progression, vaccine candidates, and biomarkers. This review gives an overview of immunoproteomics and closely related technologies that are used to define the full set of antigens targeted by the immune system during disease.

Key words

Immunoproteomics Mass spectrometry Antibody Antigen Cancer Infectious disease SERPA SEREX MHC Epitope 


  1. 1.
    Jungblut PR (2001) Proteome analysis of bacterial pathogens. Microbes Infect 3:831–840PubMedCrossRefGoogle Scholar
  2. 2.
    McComb D, Thiriot A, Krishnan L, Stark F (2013) Introduction to the immune system. Immunoproteomics. Methods Mol Biol 1061:1–20Google Scholar
  3. 3.
    O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021PubMedGoogle Scholar
  4. 4.
    Haas G, Karaali G, Ebermayer K, Metzger WG, Lamer S, Zimny-Arndt U, Diescher S, Goebel UB, Vogt K, Roznowski AB, Wiedenmann BJ, Meyer TF, Aebischer T, Jungblut PR (2002) Immunoproteomics of Helicobacter pylori infection and relation to gastric disease. Proteomics 2:313–324PubMedCrossRefGoogle Scholar
  5. 5.
    Chen Z, Peng B, Wang S, Peng X (2004) Rapid screening of highly efficient vaccine candidates by immunoproteomics. Proteomics 4:3203–3213PubMedCrossRefGoogle Scholar
  6. 6.
    Krah A, Miehlke S, Pleissner KP, Zimny-Arndt U, Kirsch C, Lehn N, Meyer TF, Jungblut PR, Aebischer T (2004) Identification of candidate antigens for serologic detection of Helicobacter pylori-infected patients with gastric carcinoma. Int J Cancer 108:456–463PubMedCrossRefGoogle Scholar
  7. 7.
    Peng X, Ye X, Wang S (2004) Identification of novel immunogenic proteins of Shigella flexneri 2a by proteomic methodologies. Vaccine 22:2750–2756PubMedCrossRefGoogle Scholar
  8. 8.
    Ying T, Wang H, Li M, Wang J, Shi Z, Feng E, Liu X, Su G, Wei K, Zhang X, Huang P, Huang L (2005) Immunoproteomics of outer membrane proteins and extracellular proteins of Shigella flexneri 2a 2457T. Proteomics 5:4777–4793PubMedCrossRefGoogle Scholar
  9. 9.
    Ying TY, Wang JJ, Wang HL, Feng EL, Wei KH, Huang LY, Huang PT, Huang CF (2005) Immunoproteomics of membrane proteins of Shigella flexneri 2a 2457T. World J Gastroenterol 11:6880–6883PubMedGoogle Scholar
  10. 10.
    Connolly JP, Comerci D, Alefantis TG, Walz A, Quan M, Chafin R, Grewal P, Mujer CV, Ugalde RA, DelVecchio VG (2006) Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vaccine development. Proteomics 6:3767–3780PubMedCrossRefGoogle Scholar
  11. 11.
    Falisse-Poirrier N, Ruelle V, ElMoualij B, Zorzi D, Pierard O, Heinen E, De Pauw E, Zorzi W (2006) Advances in immunoproteomics for serological characterization of microbial antigens. J Microbiol Methods 67:593–596PubMedCrossRefGoogle Scholar
  12. 12.
    Mini R, Bernardini G, Salzano AM, Renzone G, Scaloni A, Figura N, Santucci A (2006) Comparative proteomics and immunoproteomics of Helicobacter pylori related to different gastric pathologies. J Chromatogr B Analyt Technol Biomed Life Sci 833:63–79PubMedCrossRefGoogle Scholar
  13. 13.
    Paul-Satyaseela M, Karched M, Bian Z, Ihalin R, Boren T, Arnqvist A, Chen C, Asikainen S (2006) Immunoproteomics of Actinobacillus actinomycetemcomitans outer-membrane proteins reveal a highly immunoreactive peptidoglycan-associated lipoprotein. J Med Microbiol 55:931–942PubMedCrossRefGoogle Scholar
  14. 14.
    Bernardini G, Braconi D, Lusini P, Santucci A (2007) Helicobacter pylori, immunoproteomics related to different pathologies. Expert Rev Proteomics 4:679–689PubMedCrossRefGoogle Scholar
  15. 15.
    Hagan EC, Mobley HL (2007) Uropathogenic Escherichia coli outer membrane antigens expressed during urinary tract infection. Infect Immun 75:3941–3949PubMedCrossRefGoogle Scholar
  16. 16.
    Janovska S, Pavkova I, Reichelova M, Hubaleka M, Stulik J, Macela A (2007) Proteomic analysis of antibody response in a case of laboratory-acquired infection with Francisella tularensis subsp. tularensis. Folia Microbiol (Praha) 52:194–198CrossRefGoogle Scholar
  17. 17.
    Shin GW, Palaksha KJ, Kim YR, Nho SW, Kim S, Heo GJ, Park SC, Jung TS (2007) Application of immunoproteomics in developing a Streptococcus iniae vaccine for olive flounder (Paralichthys olivaceus). J Chromatogr B Analyt Technol Biomed Life Sci 849:315–322PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang W, Lu CP (2007) Immunoproteomics of extracellular proteins of Chinese virulent strains of Streptococcus suis type 2. Proteomics 7:4468–4476PubMedCrossRefGoogle Scholar
  19. 19.
    Li H, Xiong XP, Peng B, Xu CX, Ye MZ, Yang TC, Wang SY, Peng XX (2009) Identification of broad cross-protective immunogens using heterogeneous antiserum-based immunoproteomic approach. J Proteome Res 8:4342–4349PubMedCrossRefGoogle Scholar
  20. 20.
    Park SH, Kwon SJ, Lee SJ, Kim YC, Hwang KY, Kang YH, Lee KJ (2009) Identification of immunogenic antigen candidate for Chlamydophila pneumoniae diagnosis. J Proteome Res 8:2933–2943PubMedCrossRefGoogle Scholar
  21. 21.
    Lahner E, Bernardini G, Santucci A, Annibale B (2010) Helicobacter pylori immunoproteomics in gastric cancer and gastritis of the carcinoma phenotype. Expert Rev Proteomics 7:239–248PubMedCrossRefGoogle Scholar
  22. 22.
    Li H, Ye MZ, Peng B, Wu HK, Xu CX, Xiong XP, Wang C, Wang SY, Peng XX (2010) Immunoproteomic identification of polyvalent vaccine candidates from Vibrio parahaemolyticus outer membrane proteins. J Proteome Res 9:2573–2583PubMedCrossRefGoogle Scholar
  23. 23.
    Roy K, Bartels S, Qadri F, Fleckenstein JM (2010) Enterotoxigenic Escherichia coli elicits immune responses to multiple surface proteins. Infect Immun 78:3027–3035PubMedCrossRefGoogle Scholar
  24. 24.
    Santi L, Silva WO, Pinto AF, Schrank A, Vainstein MH (2010) Metarhizium anisopliae host-pathogen interaction, differential immunoproteomics reveals proteins involved in the infection process of arthropods. Fungal Biol 114:312–319PubMedCrossRefGoogle Scholar
  25. 25.
    Lahner E, Bernardini G, Possenti S, Renzone G, Scaloni A, Santucci A, Annibale B (2011) Immunoproteomics of Helicobacter pylori infection in patients with atrophic body gastritis, a predisposing condition for gastric cancer. Int J Med Microbiol 301:125–132PubMedCrossRefGoogle Scholar
  26. 26.
    Wang Y, Dang Y, Wang X, Lu H, Lang X, Li X, Feng S, Zhang F, Ren L (2011) Comparative proteomic analyses of Streptococcus suis serotype 2 cell wall-associated proteins. Curr Microbiol 62:578–588PubMedCrossRefGoogle Scholar
  27. 27.
    Yang Y, Wang L, Yin J, Wang X, Cheng S, Lang X, Qu H, Sun C, Wang J, Zhang R (2011) Immunoproteomic analysis of Brucella melitensis and identification of a new immunogenic candidate protein for the development of brucellosis subunit vaccine. Mol Immunol 49:175–184PubMedCrossRefGoogle Scholar
  28. 28.
    Hu Q, Ding C, Tu J, Wang X, Han X, Duan Y, Yu S (2012) Immunoproteomics analysis of whole cell bacterial proteins of Riemerella anatipestifer. Vet Microbiol 157:428–438PubMedCrossRefGoogle Scholar
  29. 29.
    Pajuaba AC, Silva DA, Almeida KC, Cunha-Junior JP, Pirovani CP, Camillo LR, Mineo JR (2012) Immunoproteomics of Brucella abortus reveals differential antibody profiles between S19-vaccinated and naturally infected cattle. Proteomics 12:820–831PubMedCrossRefGoogle Scholar
  30. 30.
    Cha HJ, Yoon HG, Kim YW, Lee HS, Kim JW, Kweon KS, Oh BH, Park KH (1998) Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose. Eur J Biochem 253:251–262PubMedCrossRefGoogle Scholar
  31. 31.
    Hamrita B, Chahed K, Kabbage M, Guillier CL, Trimeche M, Chaieb A, Chouchane L (2008) Identification of tumor antigens that elicit a humoral immune response in breast cancer patients’ sera by serological proteome analysis (SERPA). Clin Chim Acta 393:95–102PubMedCrossRefGoogle Scholar
  32. 32.
    Li L, Chen SH, Yu CH, Li YM, Wang SQ (2008) Identification of hepatocellular-carcinoma-associated antigens and autoantibodies by serological proteome analysis combined with protein microarray. J Proteome Res 7:611–620PubMedCrossRefGoogle Scholar
  33. 33.
    Forgber M, Gellrich S, Sharav T, Sterry W, Walden P (2009) Proteome-based analysis of serologically defined tumor-associated antigens in cutaneous lymphoma. PLoS One 4:e8376PubMedCrossRefGoogle Scholar
  34. 34.
    Forgber M, Trefzer U, Sterry W, Walden P (2009) Proteome serological determination of tumor-associated antigens in melanoma. PLoS One 4:e5199PubMedCrossRefGoogle Scholar
  35. 35.
    Mou Z, He Y, Wu Y (2009) Immunoproteomics to identify tumor-associated antigens eliciting humoral response. Cancer Lett 278:123–129PubMedCrossRefGoogle Scholar
  36. 36.
    Shukla S, Pranay A, D'Cruz AK, Chaturvedi P, Kane SV, Zingde SM (2009) Immunoproteomics reveals that cancer of the tongue and the gingivobuccal complex exhibit differential autoantibody response. Cancer Biomark 5:127–135PubMedGoogle Scholar
  37. 37.
    Liu R, Wang K, Yuan K, Wei Y, Huang C (2010) Integrative oncoproteomics strategies for anticancer drug discovery. Expert Rev Proteomics 7:411–429PubMedCrossRefGoogle Scholar
  38. 38.
    Suzuki A, Iizuka A, Komiyama M, Takikawa M, Kume A, Tai S, Ohshita C, Kurusu A, Nakamura Y, Yamamoto A, Yamazaki N, Yoshikawa S, Kiyohara Y, Akiyama Y (2010) Identification of melanoma antigens using a Serological Proteome Approach (SERPA). Cancer Genomics Proteomics 7:17–23PubMedGoogle Scholar
  39. 39.
    Mojtahedi Z, Safaei A, Yousefi Z, Ghaderi A (2011) Immunoproteomics of HER2-positive and HER2-negative breast cancer patients with positive lymph nodes. OMICS 15:409–418PubMedCrossRefGoogle Scholar
  40. 40.
    O'Meara MM, Disis ML (2011) Therapeutic cancer vaccines and translating vaccinomics science to the global health clinic, emerging applications toward proof of concept. OMICS 15:579–588PubMedCrossRefGoogle Scholar
  41. 41.
    Almeras L, Lefranc D, Drobecq H, de Seze J, Dubucquoi S, Vermersch P, Prin L (2004) New antigenic candidates in multiple sclerosis, identification by serological proteome analysis. Proteomics 4:2184–2194PubMedCrossRefGoogle Scholar
  42. 42.
    Xiong X, Wang X, Wen B, Graves S, Stenos J (2012) Potential serodiagnostic markers for Q fever identified in Coxiella burnetii by immunoproteomic and protein microarray approaches. BMC Microbiol 12:35PubMedCrossRefGoogle Scholar
  43. 43.
    Kornilovs'ka I, Nilsson I, Utt M, Ljungh A, Wadstrom T (2002) Immunogenic proteins of Helicobacter pullorum, Helicobacter bilis and Helicobacter hepaticus identified by two-dimensional gel electrophoresis and immunoblotting. Proteomics 2:775–783PubMedCrossRefGoogle Scholar
  44. 44.
    Utt M, Nilsson I, Ljungh A, Wadstrom T (2002) Identification of novel immunogenic proteins of Helicobacter pylori by proteome technology. J Immunol Methods 259:1–10PubMedCrossRefGoogle Scholar
  45. 45.
    Zhong ZR, Zhou HB, Li XY, Luo QL, Song XR, Wang W, Wen HQ, Yu L, Wei W, Shen JL (2010) Serological proteome-oriented screening and application of antigens for the diagnosis of Schistosomiasis japonica. Acta Trop 116:1–8PubMedCrossRefGoogle Scholar
  46. 46.
    Chitlaru T, Gat O, Grosfeld H, Inbar I, Gozlan Y, Shafferman A (2007) Identification of in vivo-expressed immunogenic proteins by serological proteome analysis of the Bacillus anthracis secretome. Infect Immun 75:2841–2852PubMedCrossRefGoogle Scholar
  47. 47.
    Zhu YZ, Cai CS, Zhang W, Guo HX, Zhang JP, Ji YY, Ma GY, Wu JL, Li QT, Lu CP, Guo XK (2010) Immunoproteomic analysis of human serological antibody responses to vaccination with whole-cell pertussis vaccine (WCV). PLoS One 5:e13915PubMedCrossRefGoogle Scholar
  48. 48.
    Fulton KM, Zhao X, Petit MD, Kilmury SL, Wolfraim LA, House RV, Sjostedt A, Twine SM (2011) Immunoproteomic analysis of the human antibody response to natural tularemia infection with Type A or Type B strains or LVS vaccination. Int J Med Microbiol 301:591–601PubMedCrossRefGoogle Scholar
  49. 49.
    Davies DH, Liang X, Hernandez JE, Randall A, Hirst S, Mu Y, Romero KM, Nguyen TT, Kalantari-Dehaghi M, Crotty S, Baldi P, Villarreal LP, Felgner PL (2005) Profiling the humoral immune response to infection by using proteome microarrays, high-throughput vaccine and diagnostic antigen discovery. Proc Natl Acad Sci U S A 102:547–552PubMedCrossRefGoogle Scholar
  50. 50.
    Eyles JE, Unal B, Hartley MG, Newstead SL, Flick-Smith H, Prior JL, Oyston PC, Randall A, Mu Y, Hirst S, Molina DM, Davies DH, Milne T, Griffin KF, Baldi P, Titball RW, Felgner PL (2007) Immunodominant Francisella tularensis antigens identified using proteome microarray. Proteomics 7:2172–2183PubMedCrossRefGoogle Scholar
  51. 51.
    Sundaresh S, Doolan DL, Hirst S, Mu Y, Unal B, Davies DH, Felgner PL, Baldi P (2006) Identification of humoral immune responses in protein microarrays using DNA microarray data analysis techniques. Bioinformatics 22:1760–1766PubMedCrossRefGoogle Scholar
  52. 52.
    Fang Y, Frutos AG, Lahiri J (2002) Membrane protein microarrays. J Am Chem Soc 124:2394–2395PubMedCrossRefGoogle Scholar
  53. 53.
    Shin I, Cho JW, Boo DW (2004) Carbohydrate arrays for functional studies of carbohydrates. Comb Chem High Throughput Screen 7:565–574PubMedCrossRefGoogle Scholar
  54. 54.
    Davies DH, Molina DM, Wrammert J, Miller J, Hirst S, Mu Y, Pablo J, Unal B, Nakajima-Sasaki R, Liang X, Crotty S, Karem KL, Damon IK, Ahmed R, Villarreal L, Felgner PL (2007) Proteome-wide analysis of the serological response to vaccinia and smallpox. Proteomics 7:1678–1686PubMedCrossRefGoogle Scholar
  55. 55.
    Benhnia MR, Maybeno M, Blum D, Aguilar-Sino R, Matho M, Meng X, Head S, Felgner PL, Zajonc DM, Koriazova L, Kato S, Burton DR, Xiang Y, Crowe JE Jr, Peters B, Crotty S (2013) Unusual features of vaccinia virus extracellular virion form (EV) neutralization resistance revealed in human antibody responses to the smallpox vaccine. J Virol 87:1569–1585Google Scholar
  56. 56.
    Cruz-Fisher MI, Cheng C, Sun G, Pal S, Teng A, Molina DM, Kayala MA, Vigil A, Baldi P, Felgner PL, Liang X, de la Maza LM (2011) Identification of immunodominant antigens by probing a whole Chlamydia trachomatis open reading frame proteome microarray using sera from immunized mice. Infect Immun 79:246–257PubMedCrossRefGoogle Scholar
  57. 57.
    Teng A, Cruz-Fisher MI, Cheng C, Pal S, Sun G, Ralli-Jain P, Molina DM, Felgner PL, Liang X, de la Maza LM (2012) Proteomic identification of immunodominant chlamydial antigens in a mouse model. J Proteomics 77:176–186PubMedCrossRefGoogle Scholar
  58. 58.
    Conejero L, Patel N, de Reynal M, Oberdorf S, Prior J, Felgner PL, Titball RW, Salguero FJ, Bancroft GJ (2011) Low-dose exposure of C57BL/6 mice to burkholderia pseudomallei mimics chronic human melioidosis. Am J Pathol 179:270–280PubMedCrossRefGoogle Scholar
  59. 59.
    Cannella AP, Tsolis RM, Liang L, Felgner PL, Saito M, Sette A, Gotuzzo E, Vinetz JM (2012) Antigen-specific acquired immunity in human brucellosis, implications for diagnosis, prognosis, and vaccine development. Front Cell Infect Microbiol 2:1PubMedCrossRefGoogle Scholar
  60. 60.
    Kunnath-Velayudhan S, Salamon H, Wang HY, Davidow AL, Molina DM, Huynh VT, Cirillo DM, Michel G, Talbot EA, Perkins MD, Felgner PL, Liang X, Gennaro ML (2010) Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proc Natl Acad Sci U S A 107:14703–14708PubMedCrossRefGoogle Scholar
  61. 61.
    Kunnath-Velayudhan S, Davidow AL, Wang HY, Molina DM, Huynh VT, Salamon H, Pine R, Michel G, Perkins MD, Xiaowu L, Felgner PL, Flynn JL, Catanzaro A, Gennaro ML (2012) Proteome-scale antibody responses and outcome of Mycobacterium tuberculosis infection in nonhuman primates and in tuberculosis patients. J Infect Dis 206:697–705PubMedCrossRefGoogle Scholar
  62. 62.
    Lee SJ, Liang L, Juarez S, Nanton MR, Gondwe EN, Msefula CL, Kayala MA, Necchi F, Heath JN, Hart P, Tsolis RM, Heyderman RS, MacLennan CA, Felgner PL, Davies DH, McSorley SJ (2012) Identification of a common immune signature in murine and human systemic Salmonellosis. Proc Natl Acad Sci U S A 109:4998–5003PubMedCrossRefGoogle Scholar
  63. 63.
    Dasgupta G, Chentoufi AA, Kalantari M, Falatoonzadeh P, Chun S, Lim CH, Felgner PL, Davies DH, BenMohamed L (2012) Immunodominant “asymptomatic” herpes simplex virus 1 and 2 protein antigens identified by probing whole-ORFome microarrays with serum antibodies from seropositive asymptomatic versus symptomatic individuals. J Virol 86:4358–4369PubMedCrossRefGoogle Scholar
  64. 64.
    Kalantari-Dehaghi M, Chun S, Chentoufi AA, Pablo J, Liang L, Dasgupta G, Molina DM, Jasinskas A, Nakajima-Sasaki R, Felgner J, Hermanson G, BenMohamed L, Felgner PL, Davies DH (2012) Discovery of potential diagnostic and vaccine antigens in herpes simplex virus 1 and 2 by proteome-wide antibody profiling. J Virol 86:4328–4339PubMedCrossRefGoogle Scholar
  65. 65.
    Doolan DL, Mu Y, Unal B, Sundaresh S, Hirst S, Valdez C, Randall A, Molina D, Liang X, Freilich DA, Oloo JA, Blair PL, Aguiar JC, Baldi P, Davies DH, Felgner PL (2008) Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics 8:4680–4694PubMedCrossRefGoogle Scholar
  66. 66.
    Barry AE, Trieu A, Fowkes FJ, Pablo J, Kalantari-Dehaghi M, Jasinskas A, Tan X, Kayala MA, Tavul L, Siba PM, Day KP, Baldi P, Felgner PL, Doolan DL (2011) The stability and complexity of antibody responses to the major surface antigen of Plasmodium falciparum are associated with age in a malaria endemic area. Mol Cell Proteomics 10:M111 008326PubMedGoogle Scholar
  67. 67.
    Nnedu ON, O'Leary MP, Mutua D, Mutai B, Kalantari-Dehaghi M, Jasinskas A, Nakajima-Sasaki R, John-Stewart G, Otieno P, Liang X, Waitumbi J, Kimani F, Camerini D, Felgner PL, Walson JL, Vigil A (2011) Humoral immune responses to Plasmodium falciparum among HIV-1-infected Kenyan adults. Proteomics Clin Appl 5:613–623PubMedCrossRefGoogle Scholar
  68. 68.
    Fan YT, Wang Y, Ju C, Zhang T, Xu B, Hu W, Chen JH (2013) Systematic analysis of natural antibody responses to P. falciparum merozoite antigens by protein arrays. J Proteomics 78:148–158Google Scholar
  69. 69.
    Beare PA, Chen C, Bouman T, Pablo J, Unal B, Cockrell DC, Brown WC, Barbian KD, Porcella SF, Samuel JE, Felgner PL, Heinzen RA (2008) Candidate antigens for Q fever serodiagnosis revealed by immunoscreening of a Coxiella burnetii protein microarray. Clin Vaccine Immunol 15:1771–1779PubMedCrossRefGoogle Scholar
  70. 70.
    Vigil A, Chen C, Jain A, Nakajima-Sasaki R, Jasinskas A, Pablo J, Hendrix LR, Samuel JE, Felgner PL (2011) Profiling the humoral immune response of acute and chronic Q fever by protein microarray. Mol Cell Proteomics 10:M110 006304PubMedGoogle Scholar
  71. 71.
    Liang L, Doskaya M, Juarez S, Caner A, Jasinskas A, Tan X, Hajagos BE, Bradley PJ, Korkmaz M, Guruz Y, Felgner PL, Davies DH (2011) Identification of potential serodiagnostic and subunit vaccine antigens by antibody profiling of toxoplasmosis cases in Turkey. Mol Cell Proteomics 10:M110 006916PubMedGoogle Scholar
  72. 72.
    Suwannasaen D, Mahawantung J, Chaowagul W, Limmathurotsakul D, Felgner PL, Davies H, Bancroft GJ, Titball RW, Lertmemongkolchai G (2011) Human immune responses to Burkholderia pseudomallei characterized by protein microarray analysis. J Infect Dis 203:1002–1011PubMedCrossRefGoogle Scholar
  73. 73.
    Barbour AG, Jasinskas A, Kayala MA, Davies DH, Steere AC, Baldi P, Felgner PL (2008) A genome-wide proteome array reveals a limited set of immunogens in natural infections of humans and white-footed mice with Borrelia burgdorferi. Infect Immun 76:3374–3389PubMedCrossRefGoogle Scholar
  74. 74.
    Sundaresh S, Randall A, Unal B, Petersen JM, Belisle JT, Hartley MG, Duffield M, Titball RW, Davies DH, Felgner PL, Baldi P (2007) From protein microarrays to diagnostic antigen discovery, a study of the pathogen Francisella tularensis. Bioinformatics 23:i508–i518PubMedCrossRefGoogle Scholar
  75. 75.
    Zheng D, Wan J, Cho YG, Wang L, Chiou CJ, Pai S, Woodard C, Zhu J, Liao G, Martinez-Maza O, Qian J, Zhu H, Hayward GS, Ambinder RF, Hayward SD (2011) Comparison of humoral immune responses to Epstein-Barr virus and Kaposi’s sarcoma-associated herpesvirus using a viral proteome microarray. J Infect Dis 204:1683–1691PubMedCrossRefGoogle Scholar
  76. 76.
    Hakomori S (2002) Glycosylation defining cancer malignancy, new wine in an old bottle. Proc Natl Acad Sci U S A 99:10231–10233PubMedCrossRefGoogle Scholar
  77. 77.
    Coenen D, Verschueren P, Westhovens R, Bossuyt X (2007) Technical and diagnostic performance of 6 assays for the measurement of citrullinated protein/peptide antibodies in the diagnosis of rheumatoid arthritis. Clin Chem 53:498–504PubMedCrossRefGoogle Scholar
  78. 78.
    Hiki Y (2009) O-linked oligosaccharides of the IgA1 hinge region, roles of its aberrant structure in the occurrence and/or progression of IgA nephropathy. Clin Exp Nephrol 13:415–423PubMedCrossRefGoogle Scholar
  79. 79.
    Schietinger A, Philip M, Yoshida BA, Azadi P, Liu H, Meredith SC, Schreiber H (2006) A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 314:304–308PubMedCrossRefGoogle Scholar
  80. 80.
    Wandall HH, Blixt O, Tarp MA, Pedersen JW, Bennett EP, Mandel U, Ragupathi G, Livingston PO, Hollingsworth MA, Taylor-Papadimitriou J, Burchell J, Clausen H (2010) Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes. Cancer Res 70:1306–1313PubMedCrossRefGoogle Scholar
  81. 81.
    Smorodin EP, Kurtenkov OA, Shevchuk IN, Tanner RH (2005) The isolation and characterization of human natural alphaGal-specific IgG antibodies applicable to the detection of alphaGal-glycosphingolipids. J Immunoassay Immunochem 26:145–156PubMedCrossRefGoogle Scholar
  82. 82.
    Reis CA, David L, Seixas M, Burchell J, Sobrinho-Simoes M (1998) Expression of fully and under-glycosylated forms of MUC1 mucin in gastric carcinoma. Int J Cancer 79:402–410PubMedCrossRefGoogle Scholar
  83. 83.
    Brockhausen I (1999) Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta 1473:67–95PubMedCrossRefGoogle Scholar
  84. 84.
    Blixt O, Clo E, Nudelman AS, Sorensen KK, Clausen T, Wandall HH, Livingston PO, Clausen H, Jensen KJ (2010) A high-throughput O-glycopeptide discovery platform for seromic profiling. J Proteome Res 9:5250–5261PubMedCrossRefGoogle Scholar
  85. 85.
    Kracun SK, Clo E, Clausen H, Levery SB, Jensen KJ, Blixt O (2010) Random glycopeptide bead libraries for seromic biomarker discovery. J Proteome Res 9:6705–6714PubMedCrossRefGoogle Scholar
  86. 86.
    Pedersen JW, Blixt O, Bennett EP, Tarp MA, Dar I, Mandel U, Poulsen SS, Pedersen AE, Rasmussen S, Jess P, Clausen H, Wandall HH (2011) Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int J Cancer 128:1860–1871PubMedCrossRefGoogle Scholar
  87. 87.
    Reis CA, Campos D, Osorio H, Santos LL (2011) Glycopeptide microarray for autoantibody detection in cancer. Expert Rev Proteomics 8:435–437PubMedCrossRefGoogle Scholar
  88. 88.
    Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274:10689–10692PubMedCrossRefGoogle Scholar
  89. 89.
    Poltorak A, Ricciardi-Castagnoli P, Citterio S, Beutler B (2000) Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc Natl Acad Sci U S A 97:2163–2167PubMedCrossRefGoogle Scholar
  90. 90.
    Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J, Tedin K, Taha MK, Labigne A, Zahringer U, Coyle AJ, DiStefano PS, Bertin J, Sansonetti PJ, Philpott DJ (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300:1584–1587PubMedCrossRefGoogle Scholar
  91. 91.
    Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278:8869–8872PubMedCrossRefGoogle Scholar
  92. 92.
    Girardin SE, Hugot JP, Sansonetti PJ (2003) Lessons from Nod2 studies, towards a link between Crohn’s disease and bacterial sensing. Trends Immunol 24:652–658PubMedCrossRefGoogle Scholar
  93. 93.
    Girardin SE, Travassos LH, Herve M, Blanot D, Boneca IG, Philpott DJ, Sansonetti PJ, Mengin-Lecreulx D (2003) Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem 278:41702–41708PubMedCrossRefGoogle Scholar
  94. 94.
    Verma A, Arora SK, Kuravi SK, Ramphal R (2005) Roles of specific amino acids in the N terminus of Pseudomonas aeruginosa flagellin and of flagellin glycosylation in the innate immune response. Infect Immun 73:8237–8246PubMedCrossRefGoogle Scholar
  95. 95.
    Doig P, Kinsella N, Guerry P, Trust TJ (1996) Characterization of a post-translational modification of Campylobacter flagellin, identification of a sero-specific glycosyl moiety. Mol Microbiol 19:379–387PubMedCrossRefGoogle Scholar
  96. 96.
    Horn C, Namane A, Pescher P, Riviere M, Romain F, Puzo G, Barzu O, Marchal G (1999) Decreased capacity of recombinant 45/47-kDa molecules (Apa) of Mycobacterium tuberculosis to stimulate T lymphocyte responses related to changes in their mannosylation pattern. J Biol Chem 274:32023–32030PubMedCrossRefGoogle Scholar
  97. 97.
    Romain F, Horn C, Pescher P, Namane A, Riviere M, Puzo G, Barzu O, Marchal G (1999) Deglycosylation of the 45/47-kilodalton antigen complex of Mycobacterium tuberculosis decreases its capacity to elicit in vivo or in vitro cellular immune responses. Infect Immun 67:5567–5572PubMedGoogle Scholar
  98. 98.
    Logan SM, Kelly JF, Thibault P, Ewing CP, Guerry P (2002) Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Mol Microbiol 46:587–597PubMedCrossRefGoogle Scholar
  99. 99.
    Mehta AS, Saile E, Zhong W, Buskas T, Carlson R, Kannenberg E, Reed Y, Quinn CP, Boons GJ (2006) Synthesis and antigenic analysis of the BclA glycoprotein oligosaccharide from the Bacillus anthracis exosporium. Chemistry 12:9136–9149PubMedCrossRefGoogle Scholar
  100. 100.
    Wang D, Carroll GT, Turro NJ, Koberstein JT, Kovac P, Saksena R, Adamo R, Herzenberg LA, Steinman L (2007) Photogenerated glycan arrays identify immunogenic sugar moieties of Bacillus anthracis exosporium. Proteomics 7:180–184PubMedCrossRefGoogle Scholar
  101. 101.
    Dhenin SG, Moreau V, Morel N, Nevers MC, Volland H, Creminon C, Djedaini-Pilard F (2008) Synthesis of an anthrose derivative and production of polyclonal antibodies for the detection of anthrax spores. Carbohydr Res 343:2101–2110PubMedCrossRefGoogle Scholar
  102. 102.
    Dhenin SG, Moreau V, Nevers MC, Creminon C, Djedaini-Pilard F (2009) Sensitive and specific enzyme immunoassays for antigenic trisaccharide from Bacillus anthracis spores. Org Biomol Chem 7:5184–5199PubMedCrossRefGoogle Scholar
  103. 103.
    Lee SY, Jeoung D (2007) The reverse proteomics for identification of tumor antigens. J Microbiol Biotechnol 17:879–890PubMedGoogle Scholar
  104. 104.
    Sahin U, Tureci O, Pfreundschuh M (1997) Serological identification of human tumor antigens. Curr Opin Immunol 9:709–716PubMedCrossRefGoogle Scholar
  105. 105.
    Scanlan MJ, Gordan JD, Williamson B, Stockert E, Bander NH, Jongeneel V, Gure AO, Jager D, Jager E, Knuth A, Chen YT, Old LJ (1999) Antigens recognized by autologous antibody in patients with renal-cell carcinoma. Int J Cancer 83:456–464PubMedCrossRefGoogle Scholar
  106. 106.
    Scanlan MJ, Gout I, Gordon CM, Williamson B, Stockert E, Gure AO, Jager D, Chen YT, Mackay A, O'Hare MJ, Old LJ (2001) Humoral immunity to human breast cancer, antigen definition and quantitative analysis of mRNA expression. Cancer Immun 1:4PubMedGoogle Scholar
  107. 107.
    Koroleva EP, Lagarkova MA, Mesheryakov AA, Scanlan MJ, Old LJ, Nedospasov SA, Kuprash DV (2002) Serological identification of antigens associated with renal cell carcinoma. Russ J Immunol 7:229–238PubMedGoogle Scholar
  108. 108.
    Devitt G, Meyer C, Wiedemann N, Eichmuller S, Kopp-Schneider A, Haferkamp A, Hautmann R, Zoller M (2006) Serological analysis of human renal cell carcinoma. Int J Cancer 118:2210–2219PubMedCrossRefGoogle Scholar
  109. 109.
    Scanlan MJ, Chen YT, Williamson B, Gure AO, Stockert E, Gordan JD, Tureci O, Sahin U, Pfreundschuh M, Old LJ (1998) Characterization of human colon cancer antigens recognized by autologous antibodies. Int J Cancer 76:652–658PubMedCrossRefGoogle Scholar
  110. 110.
    Line A, Slucka Z, Stengrevics A, Silina K, Li G, Rees RC (2002) Characterisation of tumour-associated antigens in colon cancer. Cancer Immunol Immunother 51:574–582PubMedCrossRefGoogle Scholar
  111. 111.
    Ishikawa T, Fujita T, Suzuki Y, Okabe S, Yuasa Y, Iwai T, Kawakami Y (2003) Tumor-specific immunological recognition of frameshift-mutated peptides in colon cancer with microsatellite instability. Cancer Res 63:5564–5572PubMedGoogle Scholar
  112. 112.
    Obata Y, Akahashi T, Tamaki H, Tominaga S, Murai H, Iwase T, Iwata H, Mizutani M, Chen YT, Old LJ, Miura S (1999) Identification of cancer antigens in breast cancer by the SEREX expression cloning method. Breast Cancer 6:305–311PubMedCrossRefGoogle Scholar
  113. 113.
    Forti S, Scanlan MJ, Invernizzi A, Castiglioni F, Pupa S, Agresti R, Fontanelli R, Morelli D, Old LJ, Pupa SM, Menard S (2002) Identification of breast cancer-restricted antigens by antibody screening of SKBR3 cDNA library using a preselected patient’s serum. Breast Cancer Res Treat 73:245–256PubMedCrossRefGoogle Scholar
  114. 114.
    Jager D, Unkelbach M, Frei C, Bert F, Scanlan MJ, Jager E, Old LJ, Chen YT, Knuth A (2002) Identification of tumor-restricted antigens NY-BR-1, SCP-1, and a new cancer/testis-like antigen NW-BR-3 by serological screening of a testicular library with breast cancer serum. Cancer Immun 2:5PubMedGoogle Scholar
  115. 115.
    Minenkova O, Pucci A, Pavoni E, De Tomassi A, Fortugno P, Gargano N, Cianfriglia M, Barca S, De Placido S, Martignetti A, Felici F, Cortese R, Monaci P (2003) Identification of tumor-associated antigens by screening phage-displayed human cDNA libraries with sera from tumor patients. Int J Cancer 106:534–544PubMedCrossRefGoogle Scholar
  116. 116.
    Jager D, Taverna C, Zippelius A, Knuth A (2004) Identification of tumor antigens as potential target antigens for immunotherapy by serological expression cloning. Cancer Immunol Immunother 53:144–147PubMedCrossRefGoogle Scholar
  117. 117.
    Qian F, Odunsi K, Blatt LM, Scanlan MJ, Mannan M, Shah N, Montgomery J, Haddad F, Taylor M (2005) Tumor associated antigen recognition by autologous serum in patients with breast cancer. Int J Mol Med 15:137–144PubMedGoogle Scholar
  118. 118.
    Shimada H, Nakashima K, Ochiai T, Nabeya Y, Takiguchi M, Nomura F, Hiwasa T (2005) Serological identification of tumor antigens of esophageal squamous cell carcinoma. Int J Oncol 26:77–86PubMedGoogle Scholar
  119. 119.
    Jager D (2007) Potential target antigens for immunotherapy identified by serological expression cloning (SEREX). Methods Mol Biol 360:319–326PubMedGoogle Scholar
  120. 120.
    Kiyamova R, Kostianets O, Malyuchik S, Filonenko V, Usenko V, Gurtovyy V, Khozayenko Y, Antonuk S, Old L, Gout I (2010) Identification of tumor-associated antigens from medullary breast carcinoma by a modified SEREX approach. Mol Biotechnol 46:105–112PubMedCrossRefGoogle Scholar
  121. 121.
    Song MH, Ha JC, Lee SM, Park YM, Lee SY (2011) Identification of BCP-20 (FBXO39) as a cancer/testis antigen from colon cancer patients by SEREX. Biochem Biophys Res Commun 408:195–201PubMedCrossRefGoogle Scholar
  122. 122.
    Kostianets O, Shyian M, Sergiy D, Antoniuk S, Gout I, Filonenko V, Kiyamova R (2012) Serological analysis of SEREX-defined medullary breast carcinoma-associated antigens. Cancer Invest 30:519–527PubMedCrossRefGoogle Scholar
  123. 123.
    Song MH, Choi KU, Shin DH, Lee CH, Lee SY (2012) Identification of the cancer/testis antigens AKAP3 and CTp11 by SEREX in hepatocellular carcinoma. Oncol Rep 28:1792–1798PubMedGoogle Scholar
  124. 124.
    Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ (1997) A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci U S A 94:1914–1918PubMedCrossRefGoogle Scholar
  125. 125.
    Jager E, Jager D, Knuth A (1999) CTL-defined cancer vaccines, perspectives for active immunotherapeutic interventions in minimal residual disease. Cancer Metastasis Rev 18:143–150PubMedCrossRefGoogle Scholar
  126. 126.
    Old LJ (2008) Cancer vaccines, an overview. Cancer Immun 8(Suppl 1):1PubMedGoogle Scholar
  127. 127.
    Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557PubMedCrossRefGoogle Scholar
  128. 128.
    Mischo A, Wadle A, Watzig K, Jager D, Stockert E, Santiago D, Ritter G, Regitz E, Jager E, Knuth A, Old L, Pfreundschuh M, Renner C (2003) Recombinant antigen expression on yeast surface (RAYS) for the detection of serological immune responses in cancer patients. Cancer Immun 3:5PubMedGoogle Scholar
  129. 129.
    Wadle A, Mischo A, Imig J, Wullner B, Hensel D, Watzig K, Neumann F, Kubuschok B, Schmidt W, Old LJ, Pfreundschuh M, Renner C (2005) Serological identification of breast cancer-related antigens from a Saccharomyces cerevisiae surface display library. Int J Cancer 117:104–113PubMedCrossRefGoogle Scholar
  130. 130.
    Kim MS, Choi HY, Choi YS, Kim J, Kim YS (2007) Optimized serological isolation of lung-cancer-associated antigens from a yeast surface-expressed cDNA library. J Microbiol Biotechnol 17:993–1001PubMedGoogle Scholar
  131. 131.
    Jongeneel V (2001) Towards a cancer immunome database. Cancer Immun 1:3PubMedGoogle Scholar
  132. 132.
    Caron M, Choquet-Kastylevsky G, Joubert-Caron R (2007) Cancer immunomics using autoantibody signatures for biomarker discovery. Mol Cell Proteomics 6:1115–1122PubMedCrossRefGoogle Scholar
  133. 133.
    Hardouin J, Lasserre JP, Canelle L, Duchateau M, Vlieghe C, Choquet-Kastylevsky G, Joubert-Caron R, Caron M (2007) Usefulness of autoantigens depletion to detect autoantibody signatures by multiple affinity protein profiling. J Sep Sci 30:352–358PubMedCrossRefGoogle Scholar
  134. 134.
    Hardouin J, Lasserre JP, Sylvius L, Joubert-Caron R, Caron M (2007) Cancer immunomics, from serological proteome analysis to multiple affinity protein profiling. Ann N Y Acad Sci 1107:223–230PubMedCrossRefGoogle Scholar
  135. 135.
    Roozendaal R, Carroll MC (2007) Complement receptors CD21 and CD35 in humoral immunity. Immunol Rev 219:157–166PubMedCrossRefGoogle Scholar
  136. 136.
    Solomon S, Kassahn D, Illges H (2005) The role of the complement and the Fc gamma R system in the pathogenesis of arthritis. Arthritis Res Ther 7:129–135PubMedCrossRefGoogle Scholar
  137. 137.
    Croce MV, Fejes M, Riera N, Minoldo DA, Segal-Eiras A (1985) Clinical importance of circulating immune complexes in human acute lymphoblastic leukemia. Cancer Immunol Immunother 20:91–95PubMedCrossRefGoogle Scholar
  138. 138.
    Liu P, Overman RG, Yates NL, Alam SM, Vandergrift N, Chen Y, Graw F, Freel SA, Kappes JC, Ochsenbauer C, Montefiori DC, Gao F, Perelson AS, Cohen MS, Haynes BF, Tomaras GD (2011) Dynamic antibody specificities and virion concentrations in circulating immune complexes in acute to chronic HIV-1 infection. J Virol 85:11196–11207PubMedCrossRefGoogle Scholar
  139. 139.
    Coppo R, Bosticardo GM, Basolo B, Messina M, Mazzucco G, Stratta P, Quarello F, Alloatti S, Piccoli G (1982) Clinical significance of the detection of circulating immune complexes in lupus nephritis. Nephron 32:320–328PubMedCrossRefGoogle Scholar
  140. 140.
    Soltis RD, Hasz DE (1983) The effect of serum immunoglobulin concentration on immune complex detection by polyethylene glycol. J Immunol Methods 57:275–282PubMedCrossRefGoogle Scholar
  141. 141.
    Valentijn RM, van Overhagen H, Hazevoet HM, Hermans J, Cats A, Daha MR, van EL (1985) The value of complement and immune complex determinations in monitoring disease activity in patients with systemic lupus erythematosus. Arthritis Rheum 28:904–913PubMedCrossRefGoogle Scholar
  142. 142.
    Lock RJ, Unsworth DJ (2000) Measurement of immune complexes is not useful in routine clinical practice. Ann Clin Biochem 37(Pt 3):253–261PubMedCrossRefGoogle Scholar
  143. 143.
    Ohyama K, Ueki Y, Kawakami A, Kishikawa N, Tamai M, Osaki M, Kamihira S, Nakashima K, Kuroda N (2011) Immune complexome analysis of serum and its application in screening for immune complex antigens in rheumatoid arthritis. Clin Chem 57:905–909PubMedCrossRefGoogle Scholar
  144. 144.
    Ohyama K, Kuroda N (2012) Proteomic approaches to profiling the humoral immune response and identifying disease-associated antigens. Biol Pharm Bull 35:1409–1412PubMedGoogle Scholar
  145. 145.
    Ohyama K, Kawakami A, Tamai M, Baba M, Kishikawa N, Kuroda N (2012) Serum immune complex containing thrombospondin-1, a novel biomarker for early rheumatoid arthritis. Ann Rheum Dis 71:1916–1917PubMedCrossRefGoogle Scholar
  146. 146.
    Beyer NH, Schou C, Houen G, Heegaard NH (2008) Extraction and identification of electroimmunoprecipitated proteins from agarose gels. J Immunol Methods 330:24–33PubMedCrossRefGoogle Scholar
  147. 147.
    Grubb AO (1974) Crossed immunoelectrophoresis and electroimmunoassay of IgG. J Immunol 113:343–347PubMedGoogle Scholar
  148. 148.
    Grubb AO (1974) Crossed immunoelectrophoresis and electroimmunoassay of IgM. J Immunol 112:1420–1425PubMedGoogle Scholar
  149. 149.
    Laurell CB (1966) Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal Biochem 15:45–52PubMedCrossRefGoogle Scholar
  150. 150.
    Gershoni JM, Roitburd-Berman A, Siman-Tov DD, Tarnovitski Freund N, Weiss Y (2007) Epitope mapping, the first step in developing epitope-based vaccines. BioDrugs 21:145–156PubMedCrossRefGoogle Scholar
  151. 151.
    Carter JM, Loomis-Price L (2004) B cell epitope mapping using synthetic peptides. Curr Protoc Immunol Chapter 9, Unit 9 4Google Scholar
  152. 152.
    Ladner RC (2007) Mapping the epitopes of antibodies. Biotechnol Genet Eng Rev 24:1–30PubMedCrossRefGoogle Scholar
  153. 153.
    Hugues S, Malherbe L, Filippi C, Glaichenhaus N (2002) Generation and use of alternative multimers of peptide/MHC complexes. J Immunol Methods 268:83–92PubMedCrossRefGoogle Scholar
  154. 154.
    Watts C, Moss CX, Mazzeo D, West MA, Matthews SP, Li DN, Manoury B (2003) Creation versus destruction of T cell epitopes in the class II MHC pathway. Ann N Y Acad Sci 987:9–14PubMedCrossRefGoogle Scholar
  155. 155.
    Saunders PM, van Endert P (2011) Running the gauntlet, from peptide generation to antigen presentation by MHC class I. Tissue Antigens 78:161–170PubMedCrossRefGoogle Scholar
  156. 156.
    Pogue RR, Eron J, Frelinger JA, Matsui M (1995) Amino-terminal alteration of the HLA-A*0201-restricted human immunodeficiency virus pol peptide increases complex stability and in vitro immunogenicity. Proc Natl Acad Sci U S A 92:8166–8170PubMedCrossRefGoogle Scholar
  157. 157.
    Abdel-Motal UM, Friedline R, Poligone B, Pogue-Caley RR, Frelinger JA, Tisch R (2001) Dendritic cell vaccination induces cross-reactive cytotoxic T lymphocytes specific for wild-type and natural variant human immunodeficiency virus type 1 epitopes in HLA-A*0201/Kb transgenic mice. Clin Immunol 101:51–58PubMedCrossRefGoogle Scholar
  158. 158.
    Kessler JH, Melief CJ (2007) Identification of T-cell epitopes for cancer immunotherapy. Leukemia 21:1859–1874PubMedCrossRefGoogle Scholar
  159. 159.
    Hunt DF, Michel H, Dickinson TA, Shabanowitz J, Cox AL, Sakaguchi K, Appella E, Grey HM, Sette A (1992) Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science 256:1817–1820PubMedCrossRefGoogle Scholar
  160. 160.
    Anthony DD, Lehmann PV (2003) T-cell epitope mapping using the ELISPOT approach. Methods 29:260–269PubMedCrossRefGoogle Scholar
  161. 161.
    Koelle DM (2003) Expression cloning for the discovery of viral antigens and epitopes recognized by T cells. Methods 29:213–226PubMedCrossRefGoogle Scholar
  162. 162.
    Lemmel C, Stevanovic S (2003) The use of HPLC-MS in T-cell epitope identification. Methods 29:248–259PubMedCrossRefGoogle Scholar
  163. 163.
    Wang RF (2003) Identification of MHC class II-restricted tumor antigens recognized by CD4+ T cells. Methods 29:227–235PubMedCrossRefGoogle Scholar
  164. 164.
    Buus S, Claesson MH (2004) Identifying multiple tumor-specific epitopes from large-scale screening for overexpressed mRNA. Curr Opin Immunol 16:137–142PubMedCrossRefGoogle Scholar
  165. 165.
    Wang M, Bai F, Pries M, Buus S, Prause JU, Nissen MH (2006) Identification of MHC class I H-2 Kb/Db-restricted immunogenic peptides derived from retinal proteins. Invest Ophthalmol Vis Sci 47:3939–3945PubMedCrossRefGoogle Scholar
  166. 166.
    Gunawardana CG, Diamandis EP (2007) High throughput proteomic strategies for identifying tumour-associated antigens. Cancer Lett 249:110–119PubMedCrossRefGoogle Scholar
  167. 167.
    Thorn M, Wang M, Kloverpris H, Schmidt EG, Fomsgaard A, Wenandy L, Berntsen A, Brunak S, Buus S, Claesson MH (2007) Identification of a new hTERT-derived HLA-A*0201 restricted, naturally processed CTL epitope. Cancer Immunol Immunother 56:1755–1763PubMedCrossRefGoogle Scholar
  168. 168.
    Richards KA, Topham D, Chaves FA, Sant AJ (2010) Cutting edge, CD4 T cells generated from encounter with seasonal influenza viruses and vaccines have broad protein specificity and can directly recognize naturally generated epitopes derived from the live pandemic H1N1 virus. J Immunol 185:4998–5002PubMedCrossRefGoogle Scholar
  169. 169.
    Provenzano M, Panelli MC, Mocellin S, Bracci L, Sais G, Stroncek DF, Spagnoli GC, Marincola FM (2006) MHC-peptide specificity and T-cell epitope mapping, where immunotherapy starts. Trends Mol Med 12:465–472PubMedCrossRefGoogle Scholar
  170. 170.
    Rudensky A, Preston-Hurlburt P, Hong SC, Barlow A, Janeway CA Jr (1991) Sequence analysis of peptides bound to MHC class II molecules. Nature 353:622–627PubMedCrossRefGoogle Scholar
  171. 171.
    Rudensky A, Preston-Hurlburt P, al-Ramadi BK, Rothbard J, Janeway CA Jr (1992) Truncation variants of peptides isolated from MHC class II molecules suggest sequence motifs. Nature 359:429–431PubMedCrossRefGoogle Scholar
  172. 172.
    Engelhard VH (1994) Structure of peptides associated with MHC class I molecules. Curr Opin Immunol 6:13–23PubMedCrossRefGoogle Scholar
  173. 173.
    Engelhard VH (1994) Structure of peptides associated with class I and class II MHC molecules. Annu Rev Immunol 12:181–207PubMedCrossRefGoogle Scholar
  174. 174.
    Alfonso C, Karlsson L (2000) Nonclassical MHC class II molecules. Annu Rev Immunol 18:113–142PubMedCrossRefGoogle Scholar
  175. 175.
    Santambrogio L, Strominger JL (2006) The ins and outs of MHC class II proteins in dendritic cells. Immunity 25:857–859PubMedCrossRefGoogle Scholar
  176. 176.
    Storkus WJ, Zeh HJ 3rd, Salter RD, Lotze MT (1993) Identification of T-cell epitopes, rapid isolation of class I-presented peptides from viable cells by mild acid elution. J Immunother Emphasis Tumor Immunol 14:94–103PubMedCrossRefGoogle Scholar
  177. 177.
    Van Bleek GM, Nathenson SG (1990) Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. Nature 348:213–216PubMedCrossRefGoogle Scholar
  178. 178.
    Prilliman K, Lindsey M, Zuo Y, Jackson KW, Zhang Y, Hildebrand W (1997) Large-scale production of class I bound peptides, assigning a signature to HLA-B*1501. Immunogenetics 45:379–385PubMedCrossRefGoogle Scholar
  179. 179.
    Duyar H, Dengjel J, de Graaf KL, Wiesmuller KH, Stevanovic S, Weissert R (2005) Peptide motif for the rat MHC class II molecule RT1.Da, similarities to the multiple sclerosis-associated HLA-DRB1*1501 molecule. Immunogenetics 57:69–76PubMedCrossRefGoogle Scholar
  180. 180.
    Fissolo N, Haag S, de Graaf KL, Drews O, Stevanovic S, Rammensee HG, Weissert R (2009) Naturally presented peptides on major histocompatibility complex I and II molecules eluted from central nervous system of multiple sclerosis patients. Mol Cell Proteomics 8:2090–2101PubMedCrossRefGoogle Scholar
  181. 181.
    Wahlstrom J, Dengjel J, Persson B, Duyar H, Rammensee HG, Stevanovic S, Eklund A, Weissert R, Grunewald J (2007) Identification of HLA-DR-bound peptides presented by human bronchoalveolar lavage cells in sarcoidosis. J Clin Invest 117:3576–3582PubMedCrossRefGoogle Scholar
  182. 182.
    Demine R, Sherev T, Walden P (2003) Biochemical determination of natural tumor-associated T-cell epitopes. Mol Biotechnol 25:71–78PubMedCrossRefGoogle Scholar
  183. 183.
    Verma B, Hawkins OE, Neethling FA, Caseltine SL, Largo SR, Hildebrand WH, Weidanz JA (2010) Direct discovery and validation of a peptide/MHC epitope expressed in primary human breast cancer cells using a TCRm monoclonal antibody with profound antitumor properties. Cancer Immunol Immunother 59:563–573PubMedCrossRefGoogle Scholar
  184. 184.
    McMurtrey CP, Lelic A, Piazza P, Chakrabarti AK, Yablonsky EJ, Wahl A, Bardet W, Eckerd A, Cook RL, Hess R, Buchli R, Loeb M, Rinaldo CR, Bramson J, Hildebrand WH (2008) Epitope discovery in West Nile virus infection, Identification and immune recognition of viral epitopes. Proc Natl Acad Sci U S A 105:2981–2986PubMedCrossRefGoogle Scholar
  185. 185.
    Falk K, Rotzschke O (1993) Consensus motifs and peptide ligands of MHC class I molecules. Semin Immunol 5:81–94PubMedCrossRefGoogle Scholar
  186. 186.
    Lemmel C, Weik S, Eberle U, Dengjel J, Kratt T, Becker HD, Rammensee HG, Stevanovic S (2004) Differential quantitative analysis of MHC ligands by mass spectrometry using stable isotope labeling. Nat Biotechnol 22:450–454PubMedCrossRefGoogle Scholar
  187. 187.
    Bozzacco L, Yu H, Zebroski HA, Dengjel J, Deng H, Mojsov S, Steinman RM (2011) Mass spectrometry analysis and quantitation of peptides presented on the MHC II molecules of mouse spleen dendritic cells. J Proteome Res 10:5016–5030PubMedCrossRefGoogle Scholar
  188. 188.
    Mester G, Hoffmann V, Stevanovic S (2011) Insights into MHC class I antigen processing gained from large-scale analysis of class I ligands. Cell Mol Life Sci 68:1521–1532PubMedCrossRefGoogle Scholar
  189. 189.
    Hunt DF, Henderson RA, Shabanowitz J, Sakaguchi K, Michel H, Sevilir N, Cox AL, Appella E, Engelhard VH (1992) Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255:1261–1263PubMedCrossRefGoogle Scholar
  190. 190.
    Henderson RA, Cox AL, Sakaguchi K, Appella E, Shabanowitz J, Hunt DF, Engelhard VH (1993) Direct identification of an endogenous peptide recognized by multiple HLA-A2.1-specific cytotoxic T cells. Proc Natl Acad Sci U S A 90:10275–10279PubMedCrossRefGoogle Scholar
  191. 191.
    Cox AL, Skipper J, Chen Y, Henderson RA, Darrow TL, Shabanowitz J, Engelhard VH, Hunt DF, Slingluff CL Jr (1994) Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 264:716–719PubMedCrossRefGoogle Scholar
  192. 192.
    den Haan JM, Sherman NE, Blokland E, Huczko E, Koning F, Drijfhout JW, Skipper J, Shabanowitz J, Hunt DF, Engelhard VH et al (1995) Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 268:1476–1480CrossRefGoogle Scholar
  193. 193.
    Carralot JP, Lemmel C, Stevanovic S, Pascolo S (2008) Mass spectrometric identification of an HLA-A*0201 epitope from Plasmodium falciparum MSP-1. Int Immunol 20:1451–1456PubMedCrossRefGoogle Scholar
  194. 194.
    Hawkins OE, Vangundy RS, Eckerd AM, Bardet W, Buchli R, Weidanz JA, Hildebrand WH (2008) Identification of breast cancer peptide epitopes presented by HLA-A*0201. J Proteome Res 7:1445–1457PubMedCrossRefGoogle Scholar
  195. 195.
    Weinzierl AO, Maurer D, Altenberend F, Schneiderhan-Marra N, Klingel K, Schoor O, Wernet D, Joos T, Rammensee HG, Stevanovic S (2008) A cryptic vascular endothelial growth factor T-cell epitope, identification and characterization by mass spectrometry and T-cell assays. Cancer Res 68:2447–2454PubMedCrossRefGoogle Scholar
  196. 196.
    Seward RJ, Drouin EE, Steere AC, Costello CE (2011) Peptides presented by HLA-DR molecules in synovia of patients with rheumatoid arthritis or antibiotic-refractory Lyme arthritis. Mol Cell Proteomics 10(M110):002477PubMedGoogle Scholar
  197. 197.
    Park S, Lim Y, Lee D, Cho B, Bang YJ, Sung S, Kim HY, Kim DK, Lee YS, Song Y, Jeoung DI (2003) Identification and characterization of a novel cancer/testis antigen gene CAGE-1. Biochim Biophys Acta 1625:173–182PubMedCrossRefGoogle Scholar
  198. 198.
    Gygi SP, Rist B, Griffin TJ, Eng J, Aebersold R (2002) Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J Proteome Res 1:47–54PubMedCrossRefGoogle Scholar
  199. 199.
    Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169PubMedCrossRefGoogle Scholar
  200. 200.
    Cagney G, Emili A (2002) De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging. Nat Biotechnol 20:163–170PubMedCrossRefGoogle Scholar
  201. 201.
    Tan CT, Croft NP, Dudek NL, Williamson NA, Purcell AW (2011) Direct quantitation of MHC-bound peptide epitopes by selected reaction monitoring. Proteomics 11:2336–2340PubMedCrossRefGoogle Scholar
  202. 202.
    Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics, a tutorial. Mol Syst Biol 4:222PubMedCrossRefGoogle Scholar
  203. 203.
    Picotti P, Rinner O, Stallmach R, Dautel F, Farrah T, Domon B, Wenschuh H, Aebersold R (2010) High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods 7:43–46PubMedCrossRefGoogle Scholar
  204. 204.
    Hogan KT, Sutton JN, Chu KU, Busby JA, Shabanowitz J, Hunt DF, Slingluff CL Jr (2005) Use of selected reaction monitoring mass spectrometry for the detection of specific MHC class I peptide antigens on A3 supertype family members. Cancer Immunol Immunother 54:359–371PubMedCrossRefGoogle Scholar
  205. 205.
    Ishioka GY, Lamont AG, Thomson D, Bulbow N, Gaeta FC, Sette A, Grey HM (1992) MHC interaction and T cell recognition of carbohydrates and glycopeptides. J Immunol 148:2446–2451PubMedGoogle Scholar
  206. 206.
    Carbone FR, Gleeson PA (1997) Carbohydrates and antigen recognition by T cells. Glycobiology 7:725–730PubMedCrossRefGoogle Scholar
  207. 207.
    Kastrup IB, Andersen MH, Elliott T, Haurum JS (2001) MHC-restricted T cell responses against posttranslationally modified peptide antigens. Adv Immunol 78:267–289PubMedCrossRefGoogle Scholar
  208. 208.
    Kastrup IB, Stevanovic S, Arsequell G, Valencia G, Zeuthen J, Rammensee HG, Elliott T, Haurum JS (2000) Lectin purified human class I MHC-derived peptides, evidence for presentation of glycopeptides in vivo. Tissue Antigens 56:129–135PubMedCrossRefGoogle Scholar
  209. 209.
    Haurum JS, Arsequell G, Lellouch AC, Wong SY, Dwek RA, McMichael AJ, Elliott T (1994) Recognition of carbohydrate by major histocompatibility complex class I-restricted, glycopeptide-specific cytotoxic T lymphocytes. J Exp Med 180:739–744PubMedCrossRefGoogle Scholar
  210. 210.
    Haurum JS, Tan L, Arsequell G, Frodsham P, Lellouch AC, Moss PA, Dwek RA, McMichael AJ, Elliott T (1995) Peptide anchor residue glycosylation, effect on class I major histocompatibility complex binding and cytotoxic T lymphocyte recognition. Eur J Immunol 25:3270–3276PubMedCrossRefGoogle Scholar
  211. 211.
    Haurum JS, Hoier IB, Arsequell G, Neisig A, Valencia G, Zeuthen J, Neefjes J, Elliott T (1999) Presentation of cytosolic glycosylated peptides by human class I major histocompatibility complex molecules in vivo. J Exp Med 190:145–150PubMedCrossRefGoogle Scholar
  212. 212.
    Glithero A, Tormo J, Haurum JS, Arsequell G, Valencia G, Edwards J, Springer S, Townsend A, Pao YL, Wormald M, Dwek RA, Jones EY, Elliott T (1999) Crystal structures of two H-2Db/glycopeptide complexes suggest a molecular basis for CTL cross-reactivity. Immunity 10:63–74PubMedCrossRefGoogle Scholar
  213. 213.
    Zhang H, Li XJ, Martin DB, Aebersold R (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666PubMedCrossRefGoogle Scholar
  214. 214.
    Andersen MH, Bonfill JE, Neisig A, Arsequell G, Sondergaard I, Valencia G, Neefjes J, Zeuthen J, Elliott T, Haurum JS (1999) Phosphorylated peptides can be transported by TAP molecules, presented by class I MHC molecules, and recognized by phosphopeptide-specific CTL. J Immunol 163:3812–3818PubMedGoogle Scholar
  215. 215.
    Zarling AL, Ficarro SB, White FM, Shabanowitz J, Hunt DF, Engelhard VH (2000) Phosphorylated peptides are naturally processed and presented by major histocompatibility complex class I molecules in vivo. J Exp Med 192:1755–1762PubMedCrossRefGoogle Scholar
  216. 216.
    Meyer VS, Drews O, Gunder M, Hennenlotter J, Rammensee HG, Stevanovic S (2009) Identification of natural MHC class II presented phosphopeptides and tumor-derived MHC class I phospholigands. J Proteome Res 8:3666–3674PubMedCrossRefGoogle Scholar
  217. 217.
    Zarling AL, Polefrone JM, Evans AM, Mikesh LM, Shabanowitz J, Lewis ST, Engelhard VH, Hunt DF (2006) Identification of class I MHC-associated phosphopeptides as targets for cancer immunotherapy. Proc Natl Acad Sci U S A 103:14889–14894PubMedCrossRefGoogle Scholar
  218. 218.
    Depontieu FR, Qian J, Zarling AL, McMiller TL, Salay TM, Norris A, English AM, Shabanowitz J, Engelhard VH, Hunt DF, Topalian SL (2009) Identification of tumor-associated, MHC class II-restricted phosphopeptides as targets for immunotherapy. Proc Natl Acad Sci U S A 106:12073–12078PubMedCrossRefGoogle Scholar
  219. 219.
    Li Y, Depontieu FR, Sidney J, Salay TM, Engelhard VH, Hunt DF, Sette A, Topalian SL, Mariuzza RA (2010) Structural basis for the presentation of tumor-associated MHC class II-restricted phosphopeptides to CD4+ T cells. J Mol Biol 399:596–603PubMedCrossRefGoogle Scholar
  220. 220.
    Dinarello CA (2007) Historical insights into cytokines. Eur J Immunol 37(Suppl 1):S34–S45PubMedCrossRefGoogle Scholar
  221. 221.
    Dinarello CA (2010) Anti-inflammatory agents, present and future. Cell 140:935–950PubMedCrossRefGoogle Scholar
  222. 222.
    Bruserud O, Kittang AO (2010) The chemokine system in experimental and clinical hematology. Curr Top Microbiol Immunol 341:3–12PubMedCrossRefGoogle Scholar
  223. 223.
    Pult I, Netter HJ, Bruns M, Prassolov A, Sirma H, Hohenberg H, Chang SF, Frolich K, Krone O, Kaleta EF, Will H (2001) Identification and analysis of a new hepadnavirus in white storks. Virology 289:114–128PubMedCrossRefGoogle Scholar
  224. 224.
    Leng SX, McElhaney JE, Walston JD, Xie D, Fedarko NS, Kuchel GA (2008) ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J Gerontol A Biol Sci Med Sci 63:879–884PubMedCrossRefGoogle Scholar
  225. 225.
    Yu X, Schneiderhan-Marra N, Hsu HY, Bachmann J, Joos TO (2009) Protein microarrays, effective tools for the study of inflammatory diseases. Methods Mol Biol 577:199–214PubMedCrossRefGoogle Scholar
  226. 226.
    Han KC, Ahn DR, Yang EG (2010) An approach to multiplexing an immunosorbent assay with antibody-oligonucleotide conjugates. Bioconjug Chem 21:2190–2196PubMedCrossRefGoogle Scholar
  227. 227.
    Szarka A, Rigo J Jr, Lazar L, Beko G, Molvarec A (2010) Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array. BMC Immunol 11:59PubMedCrossRefGoogle Scholar
  228. 228.
    Yu X, Hartmann M, Wang Q, Poetz O, Schneiderhan-Marra N, Stoll D, Kazmaier C, Joos TO (2010) microFBI, a microfluidic bead-based immunoassay for multiplexed detection of proteins from a microL sample volume. PLoS One 1:e3125Google Scholar
  229. 229.
    Han KC, Yang EG, Ahn DR (2012) A highly sensitive, multiplex immunoassay using gold nanoparticle-enhanced signal amplification. Chem Commun (Camb) 48:5895–5897CrossRefGoogle Scholar
  230. 230.
    Fuson KL, Zheng M, Craxton M, Pataer A, Ramesh R, Chada S, Sutton RB (2009) Structural mapping of post-translational modifications in human interleukin-24, role of N-linked glycosylation and disulfide bonds in secretion and activity. J Biol Chem 284:30526–30533PubMedCrossRefGoogle Scholar
  231. 231.
    Guzman NA, Phillips TM (2005) Immunoaffinity CE for proteomics studies. Anal Chem 77:61A–67APubMedCrossRefGoogle Scholar
  232. 232.
    Guzman NA, Blanc T, Phillips TM (2008) Immunoaffinity capillary electrophoresis as a powerful strategy for the quantification of low-abundance biomarkers, drugs, and metabolites in biological matrices. Electrophoresis 29:3259–3278PubMedCrossRefGoogle Scholar
  233. 233.
    Guzman NA, Phillips TM (2011) Immunoaffinity capillary electrophoresis, a new versatile tool for determining protein biomarkers in inflammatory processes. Electrophoresis 32:1565–1578PubMedGoogle Scholar
  234. 234.
    Boyle MD, Hess JL, Nuara AA, Buller RM (2006) Application of immunoproteomics to rapid cytokine detection. Methods 38:342–350PubMedCrossRefGoogle Scholar
  235. 235.
    Hortin GL, Sviridov D, Anderson NL (2008) High-abundance polypeptides of the human plasma proteome comprising the top 4 logs of polypeptide abundance. Clin Chem 54:1608–1616PubMedCrossRefGoogle Scholar
  236. 236.
    Bjorhall K, Miliotis T, Davidsson P (2005) Comparison of different depletion strategies for improved resolution in proteomic analysis of human serum samples. Proteomics 5:307–317PubMedCrossRefGoogle Scholar
  237. 237.
    Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD (2003) Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics 2:1096–1103PubMedCrossRefGoogle Scholar
  238. 238.
    Harper RG, Workman SR, Schuetzner S, Timperman AT, Sutton JN (2004) Low-molecular-weight human serum proteome using ultrafiltration, isoelectric focusing, and mass spectrometry. Electrophoresis 25:1299–1306PubMedCrossRefGoogle Scholar
  239. 239.
    Groessl M, Luksch H, Rosen-Wolff A, Shevchenko A, Gentzel M (2012) Profiling of the human monocytic cell secretome by quantitative label-free mass spectrometry identifies stimulus-specific cytokines and proinflammatory proteins. Proteomics 12:2833–2842PubMedCrossRefGoogle Scholar
  240. 240.
    Van Regenmortel MH (2009) What is a B-cell epitope? Methods Mol Biol 524:3–20PubMedCrossRefGoogle Scholar
  241. 241.
    Greenbaum JA, Andersen PH, Blythe M, Bui HH, Cachau RE, Crowe J, Davies M, Kolaskar AS, Lund O, Morrison S, Mumey B, Ofran Y, Pellequer JL, Pinilla C, Ponomarenko JV, Raghava GP, van Regenmortel MH, Roggen EL, Sette A, Schlessinger A, Sollner J, Zand M, Peters B (2007) Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit 20:75–82PubMedCrossRefGoogle Scholar
  242. 242.
    Saha S, Bhasin M, Raghava GP (2005) Bcipep, a database of B-cell epitopes. BMC Genomics 6:79PubMedCrossRefGoogle Scholar
  243. 243.
    Haste Andersen P, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 15:2558–2567PubMedCrossRefGoogle Scholar
  244. 244.
    Moreau V, Granier C, Villard S, Laune D, Molina F (2006) Discontinuous epitope prediction based on mimotope analysis. Bioinformatics 22:1088–1095PubMedCrossRefGoogle Scholar
  245. 245.
    Saha S, Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65:40–48PubMedCrossRefGoogle Scholar
  246. 246.
    Bublil EM, Freund NT, Mayrose I, Penn O, Roitburd-Berman A, Rubinstein ND, Pupko T, Gershoni JM (2007) Stepwise prediction of conformational discontinuous B-cell epitopes using the Mapitope algorithm. Proteins 68:294–304PubMedCrossRefGoogle Scholar
  247. 247.
    Saha S, Raghava GP (2007) Prediction methods for B-cell epitopes. Methods Mol Biol 409:387–394PubMedCrossRefGoogle Scholar
  248. 248.
    Saha S, Raghava GP (2007) Searching and mapping of B-cell epitopes in Bcipep database. Methods Mol Biol 409:113–124PubMedCrossRefGoogle Scholar
  249. 249.
    Moreau V, Fleury C, Piquer D, Nguyen C, Novali N, Villard S, Laune D, Granier C, Molina F (2008) PEPOP, computational design of immunogenic peptides. BMC Bioinformatics 9:71PubMedCrossRefGoogle Scholar
  250. 250.
    Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B (2008) ElliPro, a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9:514PubMedCrossRefGoogle Scholar
  251. 251.
    Sweredoski MJ, Baldi P (2008) PEPITO, improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics 24:1459–1460PubMedCrossRefGoogle Scholar
  252. 252.
    Sun J, Wu D, Xu T, Wang X, Xu X, Tao L, Li YX, Cao ZW (2009) SEPPA, a computational server for spatial epitope prediction of protein antigens. Nucleic Acids Res 37:W612–W616PubMedCrossRefGoogle Scholar
  253. 253.
    Liang S, Zheng D, Standley DM, Yao B, Zacharias M, Zhang C (2010) EPSVR and EPMeta, prediction of antigenic epitopes using support vector regression and multiple server results. BMC Bioinformatics 11:381PubMedCrossRefGoogle Scholar
  254. 254.
    Zhang W, Xiong Y, Zhao M, Zou H, Ye X, Liu J (2011) Prediction of conformational B-cell epitopes from 3D structures by random forests with a distance-based feature. BMC Bioinformatics 12:341PubMedCrossRefGoogle Scholar
  255. 255.
    Evans MC (2008) Recent advances in immunoinformatics, application of in silico tools to drug development. Curr Opin Drug Discov Devel 11:233–241PubMedGoogle Scholar
  256. 256.
    Bublil EM, Yeger-Azuz S, Gershoni JM (2006) Computational prediction of the cross-reactive neutralizing epitope corresponding to the [corrected] monclonal [corrected] antibody b12 specific for HIV-1 gp120. FASEB J 20:1762–1774PubMedCrossRefGoogle Scholar
  257. 257.
    Tong JC, Ren EC (2009) Immunoinformatics, current trends and future directions. Drug Discov Today 14:684–689PubMedCrossRefGoogle Scholar
  258. 258.
    Tomar N, De RK (2010) Immunoinformatics, an integrated scenario. Immunology 131:153–168PubMedCrossRefGoogle Scholar
  259. 259.
    Bordner AJ, Mittelmann HD (2010) MultiRTA, a simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes. BMC Bioinformatics 11:482PubMedCrossRefGoogle Scholar
  260. 260.
    Bordner AJ, Abagyan R (2006) Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes. Proteins 63:512–526PubMedCrossRefGoogle Scholar
  261. 261.
    Tsurui H, Takahashi T (2007) Prediction of T-cell epitope. J Pharmacol Sci 105:299–316PubMedCrossRefGoogle Scholar
  262. 262.
    Lundegaard C, Lund O, Buus S, Nielsen M (2010) Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology 130:309–318PubMedCrossRefGoogle Scholar
  263. 263.
    Lundegaard C, Lund O, Nielsen M (2011) Prediction of epitopes using neural network based methods. J Immunol Methods 374:26–34PubMedCrossRefGoogle Scholar
  264. 264.
    Doolan DL, Aguiar JC, Weiss WR, Sette A, Felgner PL, Regis DP, Quinones-Casas P, Yates JR 3rd, Blair PL, Richie TL, Hoffman SL, Carucci DJ (2003) Utilization of genomic sequence information to develop malaria vaccines. J Exp Biol 206:3789–3802PubMedCrossRefGoogle Scholar
  265. 265.
    Moise L, McMurry JA, Buus S, Frey S, Martin WD, De Groot AS (2009) In silico-accelerated identification of conserved and immunogenic variola/vaccinia T-cell epitopes. Vaccine 27:6471–6479PubMedCrossRefGoogle Scholar
  266. 266.
    Walshe VA, Hattotuwagama CK, Doytchinova IA, Wong M, Macdonald IK, Mulder A, Claas FH, Pellegrino P, Turner J, Williams I, Turnbull EL, Borrow P, Flower DR (2009) Integrating in silico and in vitro analysis of peptide binding affinity to HLA-Cw*0102, a bioinformatic approach to the prediction of new epitopes. PLoS One 4:e8095PubMedCrossRefGoogle Scholar
  267. 267.
    Driguez P, Doolan DL, Loukas A, Felgner PL, McManus DP (2010) Schistosomiasis vaccine discovery using immunomics. Parasit Vectors 3:4PubMedCrossRefGoogle Scholar
  268. 268.
    Schirle M, Keilholz W, Weber B, Gouttefangeas C, Dumrese T, Becker HD, Stevanovic S, Rammensee HG (2000) Identification of tumor-associated MHC class I ligands by a novel T cell-independent approach. Eur J Immunol 30:2216–2225PubMedCrossRefGoogle Scholar
  269. 269.
    Pascolo S, Schirle M, Guckel B, Dumrese T, Stumm S, Kayser S, Moris A, Wallwiener D, Rammensee HG, Stevanovic S (2001) A MAGE-A1 HLA-A A*0201 epitope identified by mass spectrometry. Cancer Res 61:4072–4077PubMedGoogle Scholar
  270. 270.
    Schirle M, Weinschenk T, Stevanovic S (2001) Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens. J Immunol Methods 257:1–16PubMedCrossRefGoogle Scholar
  271. 271.
    Bozzacco L, Yu H, Dengjel J, Trumpfheller C, Zebroski HA 3rd, Zhang N, Kuttner V, Ueberheide BM, Deng H, Chait BT, Steinman RM, Mojsov S, Fenyo D (2012) Strategy for identifying dendritic cell-processed CD4+ T cell epitopes from the HIV gag p24 protein. PLoS One 7:e41897PubMedCrossRefGoogle Scholar
  272. 272.
    Messitt TJ, Terry F, Moise L, Martin W, De Groot AS (2011) A comparison of two methods for T cell epitope mapping, “cell free” in vitro versus immunoinformatics. Immunome Res 7:6PubMedGoogle Scholar
  273. 273.
    Nakayasu ES, Sobreira TJ, Torres R Jr, Ganiko L, Oliveira PS, Marques AF, Almeida IC (2012) Improved proteomic approach for the discovery of potential vaccine targets in Trypanosoma cruzi. J Proteome Res 11:237–246PubMedCrossRefGoogle Scholar
  274. 274.
    Caron E, Vincent K, Fortier MH, Laverdure JP, Bramoulle A, Hardy MP, Voisin G, Roux PP, Lemieux S, Thibault P, Perreault C (2011) The MHC I immunopeptidome conveys to the cell surface an integrative view of cellular regulation. Mol Syst Biol 7:533PubMedCrossRefGoogle Scholar
  275. 275.
    Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, Comanducci M, Jennings GT, Baldi L, Bartolini E, Capecchi B, Galeotti CL, Luzzi E, Manetti R, Marchetti E, Mora M, Nuti S, Ratti G, Santini L, Savino S, Scarselli M, Storni E, Zuo P, Broeker M, Hundt E, Knapp B, Blair E, Mason T, Tettelin H, Hood DW, Jeffries AC, Saunders NJ, Granoff DM, Venter JC, Moxon ER, Grandi G, Rappuoli R (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820PubMedCrossRefGoogle Scholar
  276. 276.
    Sano T, Smith CL, Cantor CR (1992) Immuno-PCR, very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 258:120–122PubMedCrossRefGoogle Scholar
  277. 277.
    Niemeyer CM, Adler M, Wacker R (2007) Detecting antigens by quantitative immuno-PCR. Nat Protoc 2:1918–1930PubMedCrossRefGoogle Scholar
  278. 278.
    Kasai N, Kobayashi K, Shioya S, Yoshikawa Y, Yotsumoto F, Miyamoto S, Mekada E, Enokizono J (2012) Soluble heparin-binding EGF-like growth factor (HB-EGF) detected by newly developed immuno-PCR method is a clear-cut serological biomarker for ovarian cancer. Am J Transl Res 4:415–421PubMedGoogle Scholar
  279. 279.
    Kuczius T, Becker K, Fischer A, Zhang W (2012) Simultaneous detection of three CNS indicator proteins in complex suspensions using a single immuno-PCR protocol. Anal Biochem 431:4–10PubMedCrossRefGoogle Scholar
  280. 280.
    Hashimoto M, Aoki M, Winblad B, Tjernberg LO (2012) A novel approach for Abeta(1)(−)(4)(0) quantification using immuno-PCR. J Neurosci Methods 205:364–367PubMedCrossRefGoogle Scholar
  281. 281.
    Malou N, Renvoise A, Nappez C, Raoult D (2012) Immuno-PCR for the early serological diagnosis of acute infectious diseases, the Q fever paradigm. Eur J Clin Microbiol Infect Dis 31:1951–1960PubMedCrossRefGoogle Scholar
  282. 282.
    Potuckova L, Franko F, Bambouskova M, Draber P (2011) Rapid and sensitive detection of cytokines using functionalized gold nanoparticle-based immuno-PCR, comparison with immuno-PCR and ELISA. J Immunol Methods 371:38–47PubMedCrossRefGoogle Scholar
  283. 283.
    Chao HY, Wang YC, Tang SS, Liu HW (2004) A highly sensitive immuno-polymerase chain reaction assay for Clostridium botulinum neurotoxin type A. Toxicon 43:27–34PubMedCrossRefGoogle Scholar
  284. 284.
    Allen RC, Rogelj S, Cordova SE, Kieft TL (2006) An immuno-PCR method for detecting Bacillus thuringiensis Cry1Ac toxin. J Immunol Methods 308:109–115PubMedCrossRefGoogle Scholar
  285. 285.
    Fischer A, von Eiff C, Kuczius T, Omoe K, Peters G, Becker K (2007) A quantitative real-time immuno-PCR approach for detection of staphylococcal enterotoxins. J Mol Med (Berl) 85:461–469CrossRefGoogle Scholar
  286. 286.
    Zhang W, Bielaszewska M, Pulz M, Becker K, Friedrich AW, Karch H, Kuczius T (2008) New immuno-PCR assay for detection of low concentrations of shiga toxin 2 and its variants. J Clin Microbiol 46:1292–1297PubMedCrossRefGoogle Scholar
  287. 287.
    He X, Qi W, Quinones B, McMahon S, Cooley M, Mandrell RE (2011) Sensitive detection of Shiga Toxin 2 and some of its variants in environmental samples by a novel immuno-PCR assay. Appl Environ Microbiol 77:3558–3564PubMedCrossRefGoogle Scholar
  288. 288.
    Adler M (2005) Immuno-PCR as a clinical laboratory tool. Adv Clin Chem 39:239–292PubMedCrossRefGoogle Scholar
  289. 289.
    Adler M, Wacker R, Niemeyer CM (2003) A real-time immuno-PCR assay for routine ultrasensitive quantification of proteins. Biochem Biophys Res Commun 308:240–250PubMedCrossRefGoogle Scholar
  290. 290.
    Lind K, Kubista M (2005) Development and evaluation of three real-time immuno-PCR assemblages for quantification of PSA. J Immunol Methods 304:107–116PubMedCrossRefGoogle Scholar
  291. 291.
    Niemeyer CM, Adler M, Wacker R (2005) Immuno-PCR, high sensitivity detection of proteins by nucleic acid amplification. Trends Biotechnol 23:208–216PubMedCrossRefGoogle Scholar
  292. 292.
    Malou N, Raoult D (2011) Immuno-PCR, a promising ultrasensitive diagnostic method to detect antigens and antibodies. Trends Microbiol 19:295–302PubMedCrossRefGoogle Scholar
  293. 293.
    Ferreira L, Sanchez-Juanes F, Munoz-Bellido JL, Gonzalez-Buitrago JM (2011) Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, intact cell vs. extraction method. Clin Microbiol Infect 17:1007–1012PubMedCrossRefGoogle Scholar
  294. 294.
    Welker M (2011) Proteomics for routine identification of microorganisms. Proteomics 11:3143–3153PubMedCrossRefGoogle Scholar
  295. 295.
    Welker M, Moore ER (2011) Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol 34:2–11PubMedCrossRefGoogle Scholar
  296. 296.
    Sogawa K, Watanabe M, Sato K, Segawa S, Miyabe A, Murata S, Saito T, Nomura F (2012) Rapid identification of microorganisms by mass spectrometry, improved performance by incorporation of in-house spectral data into a commercial database. Anal Bioanal Chem 403:1811–1822PubMedCrossRefGoogle Scholar
  297. 297.
    El-Bouri K, Johnston S, Rees E, Thomas I, Bome-Mannathoko N, Jones C, Reid M, Ben-Ismaeil B, Davies AR, Harris LG, Mack D (2012) Comparison of bacterial identification by MALDI-TOF mass spectrometry and conventional diagnostic microbiology methods, agreement, speed and cost implications. Br J Biomed Sci 69:47–55PubMedGoogle Scholar
  298. 298.
    Ouedraogo R, Flaudrops C, Ben Amara A, Capo C, Raoult D, Mege JL (2010) Global analysis of circulating immune cells by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS One 5:e13691PubMedCrossRefGoogle Scholar
  299. 299.
    Ouedraogo R, Daumas A, Ghigo E, Capo C, Mege JL, Textoris J (2012) Whole-cell MALDI-TOF MS, a new tool to assess the multifaceted activation of macrophages. J Proteomics 75:5523–5532PubMedCrossRefGoogle Scholar
  300. 300.
    Nuti DE, Crump RB, Dwi Handayani F, Chantratita N, Peacock SJ, Bowen R, Felgner PL, Davies DH, Wu T, Lyons CR, Brett PJ, Burtnick MN, Kozel TR, AuCoin DP (2011) Identification of circulating bacterial antigens by in vivo microbial antigen discovery. MBio 16:e00136Google Scholar
  301. 301.
    Testa JS, Shetty V, Hafner J, Nickens Z, Kamal S, Sinnathamby G, Philip R (2012) MHC class I-presented T cell epitopes identified by immunoproteomics analysis are targets for a cross reactive influenza-specific T cell response. PLoS One 7:e48484PubMedCrossRefGoogle Scholar
  302. 302.
    Testa JS, Shetty V, Sinnathamby G, Nickens Z, Hafner J, Kamal S, Zhang X, Jett M, Philip R (2012) Conserved MHC class I-presented dengue virus epitopes identified by immunoproteomics analysis are targets for cross-serotype reactive T-cell response. J Infect Dis 205:647–655PubMedCrossRefGoogle Scholar
  303. 303.
    Macela A, Stulik J, Hernychova L, Kroca M, Krocova Z, Kovarova H (1996) The immune response against Francisella tularensis live vaccine strain in Lps(n) and Lps(d) mice. FEMS Immunol Med Microbiol 13:235–238PubMedCrossRefGoogle Scholar
  304. 304.
    Havlasova J, Hernychova L, Halada P, Pellantova V, Krejsek J, Stulik J, Macela A, Jungblut PR, Larsson P, Forsman M (2002) Mapping of immunoreactive antigens of Francisella tularensis live vaccine strain. Proteomics 2:857–867PubMedCrossRefGoogle Scholar
  305. 305.
    Janovska S, Pavkova I, Hubalek M, Lenco J, Macela A, Stulik J (2007) Identification of immunoreactive antigens in membrane proteins enriched fraction from Francisella tularensis LVS. Immunol Lett 108:151–159PubMedCrossRefGoogle Scholar
  306. 306.
    Twine SM, Petit MD, Fulton KM, House RV, Conlan JW (2010) Immunoproteomics analysis of the murine antibody response to vaccination with an improved Francisella tularensis live vaccine strain (LVS). PLoS One 5:e10000PubMedCrossRefGoogle Scholar
  307. 307.
    Tan X, Chun S, Pablo J, Felgner P, Liang X, Davies DH (2012) Failure of the smallpox vaccine to develop a skin lesion in vaccinia virus-naive individuals is related to differences in antibody profiles before vaccination, not after. Clin Vaccine Immunol 19:418–428PubMedCrossRefGoogle Scholar
  308. 308.
    Hermanson G, Chun S, Felgner J, Tan X, Pablo J, Nakajima-Sasaki R, Molina DM, Felgner PL, Liang X, Davies DH (2012) Measurement of antibody responses to Modified Vaccinia virus Ankara (MVA) and Dryvax((R)) using proteome microarrays and development of recombinant protein ELISAs. Vaccine 30:614–625PubMedCrossRefGoogle Scholar
  309. 309.
    Cook SD, Quinless JR, Jotkowitz A, Beaton P (2001) Serum IFN neutralizing antibodies and neopterin levels in a cross-section of MS patients. Neurology 57:1080–1084PubMedCrossRefGoogle Scholar
  310. 310.
    Bertolotto A, Malucchi S, Sala A, Orefice G, Carrieri PB, Capobianco M, Milano E, Melis F, Giordana MT (2002) Differential effects of three interferon betas on neutralising antibodies in patients with multiple sclerosis, a follow up study in an independent laboratory. J Neurol Neurosurg Psychiatry 73:148–153PubMedCrossRefGoogle Scholar
  311. 311.
    Bertolotto A, Sala A, Malucchi S, Marnetto F, Caldano M, Di Sapio A, Capobianco M, Gilli F (2004) Biological activity of interferon betas in patients with multiple sclerosis is affected by treatment regimen and neutralising antibodies. J Neurol Neurosurg Psychiatry 75:1294–1299PubMedCrossRefGoogle Scholar
  312. 312.
    Von Wussow P, Hehlmann R, Hochhaus T, Jakschies D, Nolte KU, Prummer O, Ansari H, Hasford J, Heimpel H, Deicher H (1994) Roferon (rIFN-alpha 2a) is more immunogenic than intron A (rIFN-alpha 2b) in patients with chronic myelogenous leukemia. J Interferon Res 14:217–219CrossRefGoogle Scholar
  313. 313.
    Ryff JC (1997) Clinical investigation of the immunogenicity of interferon-alpha 2a. J Interferon Cytokine Res 17(Suppl 1):S29–S33PubMedGoogle Scholar
  314. 314.
    Baert F, Noman M, Vermeire S, Van Assche G, D' Haens G, Carbonez A, Rutgeerts P (2003) Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med 348:601–608PubMedCrossRefGoogle Scholar
  315. 315.
    Radstake TR, Svenson M, Eijsbouts AM, van den Hoogen FH, Enevold C, van Riel PL, Bendtzen K (2009) Formation of antibodies against infliximab and adalimumab strongly correlates with functional drug levels and clinical responses in rheumatoid arthritis. Ann Rheum Dis 68:1739–1745PubMedCrossRefGoogle Scholar
  316. 316.
    Baker MP, Jones TD (2007) Identification and removal of immunogenicity in therapeutic proteins. Curr Opin Drug Discov Devel 10:219–227PubMedGoogle Scholar
  317. 317.
    Baker MP, Reynolds HM, Lumicisi B, Bryson CJ (2010) Immunogenicity of protein therapeutics, The key causes, consequences and challenges. Self Nonself 1:314–322PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Kelly M. Fulton
    • 1
  • Susan M. Twine
    • 1
  1. 1.Human Health TherapeuticsNational Research Council CanadaOttawaCanada

Personalised recommendations