Antigen-Specific Human Monoclonal Antibodies from Transgenic Mice

  • Susana Magadán Mompó
  • África González-Fernández
Part of the Methods in Molecular Biology book series (MIMB, volume 1060)


Due to the difficulties found when generating fully human monoclonal antibodies (mAbs) by the traditional method, several efforts have attempted to overcome these problems, with varying levels of success. One approach has been the development of transgenic mice carrying immunoglobulin (Ig) genes in germ line configuration. The engineered mouse genome can undergo productive rearrangement in the B cell population, with the generation of mouse B lymphocytes expressing human Ig (hIg) chains. To avoid the expression of mouse heavy or light chains, the endogenous mouse Ig (mIg) loci must be silenced by gene-targeting techniques. Subsequently, to obtain antigen-specific mAbs, conventional immunization protocols can be followed and the mAb technique used (fusion of activated B cells with mouse myeloma cells, screening, cloning, freezing, and testing) with these animals expressing human Ig genes. This chapter describes the type of transgenic knockout mice generated for various research groups, provides examples of human mAbs developed by research groups and companies, and includes protocols of immunization, generation, production, and purification of human mAbs from such mice. In addition, it also addresses the problems detected, and includes some of the methods that can be used to analyze functional activities with human mAbs.

Key words

Human monoclonal antibodies Transgenic mice Immunoglobulin transgenes Knockout mice Transloci bearing human Ig genes Gene targeting YAC-based human Ig transloci 


  1. 1.
    Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497PubMedCrossRefGoogle Scholar
  2. 2.
    Miller RA, Maloney DG, Warnke R, Levy R (1982) Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med 306:517–522PubMedCrossRefGoogle Scholar
  3. 3.
    Stas P, Pletinckx J, Gansemans Y, Lasters I (2009) Immunogenicity assessment of antibody therapeutics. In: Melvyn Little ATA (ed) Recombinant antibodies for immunotherapy. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Benny KC Lo (2005) Protein therapeutics: mouse, humanized and human antibodies. In: Walker JM, Rapley R (eds) Medical methods handbook. Springer, Berlin, pp 429–446Google Scholar
  5. 5.
    Arruebo M, Vilaboa N, Sáez GB, Lambea J, Tres A, Valladares M, González-Fernández A (2011) Assessment of the evolution of cancer treatment therapies. Cancers 3:3279–3330PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Elbakri A, Nelson PN, Abu Odeh RO (2010) The state of antibody therapy. Hum Immunol 71:1243–1250PubMedCrossRefGoogle Scholar
  7. 7.
    Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJT (2010) The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 9:325–338PubMedCrossRefGoogle Scholar
  8. 8.
    Chester KA, Begent RH, Robson L, Keep P, Pedley RB, Boden JA et al (1994) Phage libraries for generation of clinically useful antibodies. Lancet 343:455–456PubMedCrossRefGoogle Scholar
  9. 9.
    Lonberg N (2008) Fully human antibodies from transgenic mouse and phage display platforms. Curr Opin Immunol 20:450–459PubMedCrossRefGoogle Scholar
  10. 10.
    Bratkovic T (2010) Progress in phage display: evolution of the technique and its application. Cell Mol Life Sci 67:749–767PubMedCrossRefGoogle Scholar
  11. 11.
    Hamadeh RM, Jarvis GA, Galili U, Mandrell RE, Zhou P, Griffiss JM (1992) Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J Clin Invest 89:1223–1235PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Sheeley D, Merrill B, Taylor L (1997) Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal alpha-linked galactose. Anal Biochem 247:102–110PubMedCrossRefGoogle Scholar
  13. 13.
    Borrebaeck CK, Malmborg AC, Ohlin M (1993) Does endogenous glycosylation prevent the use of mouse monoclonal antibodies as cancer therapeutics? Immunol Today 14:477–479PubMedCrossRefGoogle Scholar
  14. 14.
    Kamel-Reid S, Letarte M, Doedens M, Greaves A, Murdoch B, Grunberger T et al (1991) Bone marrow from children in relapse with pre-B acute lymphoblastic leukemia proliferates and disseminates rapidly in scid mice. Blood 78:2973–2981PubMedGoogle Scholar
  15. 15.
    McCune JM (1996) Development and applications of the SCID-hu mouse model. Semin Immunol 8:187–196PubMedCrossRefGoogle Scholar
  16. 16.
    Eren R, Lubin I, Terkieltaub D, Ben-Moshe O, Zauberman A, Uhlmann R et al (1998) Human monoclonal antibodies specific to hepatitis B virus generated in a human/mouse radiation chimera: the Trimera system. Immunology 93:154–161PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Storb U (1987) Transgenic mice with immunoglobulin genes. Annu Rev Immunol 5:151–174PubMedCrossRefGoogle Scholar
  18. 18.
    Brinster RL, Ritchie KA, Hammer RE, O’Brien RL, Arp B, Storb U (1983) Expression of a microinjected immunoglobulin gene in the spleen of transgenic mice. Nature 306:332–336PubMedCrossRefGoogle Scholar
  19. 19.
    Rusconi S, Köhler G (1985) Transmission and expression of a specific pair of rearranged immunoglobulin mu and kappa genes in a transgenic mouse line. Nature 314:330–334PubMedCrossRefGoogle Scholar
  20. 20.
    Grosschedl R, Weaver D, Baltimore D, Costantini F (1984) Introduction of a mu immunoglobulin gene into the mouse germ line: specific expression in lymphoid cells and synthesis of functional antibody. Cell 38:647–658PubMedCrossRefGoogle Scholar
  21. 21.
    González-Fernández A, Milstein C (1993) Analysis of somatic hypermutation in mouse Peyer’s patches using immunoglobulin kappa light-chain transgenes. Proc Natl Acad Sci USA 90:9862–9866PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Betz AG, Milstein C, González-Fernández A, Pannell R, Larson T, Neuberger MS (1994) Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell 77:239–248PubMedCrossRefGoogle Scholar
  23. 23.
    Yélamos J, Klix N, Goyenechea B, Lozano F, Chui Y, González F et al (1995) Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature 376:225–229PubMedCrossRefGoogle Scholar
  24. 24.
    Wagner S, Popov A, Davies S, Xian J, Neuberger M, Brüggemann M (1994) The diversity of antigen-specific monoclonal antibodies from transgenic mice bearing human immunoglobulin gene miniloci. Eur J Immunol 24:2672–2681PubMedCrossRefGoogle Scholar
  25. 25.
    Brüggemann M, Taussig MJ (1997) Production of human antibody repertoires in transgenic mice. Curr Opin Biotechnol 8:455–458PubMedCrossRefGoogle Scholar
  26. 26.
    Jakobovits A, Green LL, Hardy MC, Maynard-Currie CE, Tsuda H, Louie DM et al (1995) Production of antigen-specific human antibodies from mice engineered with human heavy and light chain YACs. Ann N Y Acad Sci 764:525–535PubMedCrossRefGoogle Scholar
  27. 27.
    Brüggemann M (2004) Chapter 34: Human monoclonal antibodies from translocus mice. In: Honjo T, Neuberger MS (eds) Molecular biology of B cell, 1st edn. Academic, New yorkGoogle Scholar
  28. 28.
    Brüggemann M, Caskey HM, Teale C, Waldmann H, Williams GT, Surani MA et al (1989) A repertoire of monoclonal antibodies with human heavy chains from transgenic mice. Proc Natl Acad Sci USA 86:6709–6713PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Kitamura D, Roes J, Kühn R, Rajewsky K (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350:423–426PubMedCrossRefGoogle Scholar
  30. 30.
    Chen J, Trounstine M, Alt FW, Young F, Kurahara C, Loring JF et al (1993) Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int Immunol 5:647–656PubMedCrossRefGoogle Scholar
  31. 31.
    Green LL, Jakobovits A (1998) Regulation of B cell development by variable gene complexity in mice reconstituted with human immunoglobulin yeast artificial chromosomes. J Exp Med 188:483–495PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Zou X, Piper T, Smith J, Allen N, Xian J, Brüggemann M (2003) Block in development at the pre-B-II to immature B cell stage in mice without Ig kappa and Ig lambda light chain. J Immunol 170:1354–1361PubMedCrossRefGoogle Scholar
  33. 33.
    Green LL, Hardy MC, Maynard-Currie CE, Tsuda H, Louie DM, Mendez MJ et al (1994) Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 7:13–21PubMedCrossRefGoogle Scholar
  34. 34.
    Pruzina S, Williams G, Kaneva G, Davies S, Martín-López A, Brüggemann M et al (2011) Human monoclonal antibodies to HIV-1 gp140 from mice bearing YAC-based human immunoglobulin transloci. Protein Eng Des Sel 24:791–799PubMedCrossRefGoogle Scholar
  35. 35.
    Magadán S, Valladares M, Suarez E, Sanjuán I, Molina A, Ayling C et al (2002) Production of antigen-specific human monoclonal antibodies: comparison of mice carrying IgH/kappa or IgH/kappa/lambda transloci. Biotechniques 33:680–684PubMedGoogle Scholar
  36. 36.
    Molina A, Valladares M, Sancho D, Viedma F, Sanjuan I, Madrid F et al (2003) The use of transgenic mice for the production of a human monoclonal antibody specific for human CD69 antigen. J Immunol Methods 2823:147–158CrossRefGoogle Scholar
  37. 37.
    Suárez E, Magadán S, Sanjuán I, Valladares M, Molina A, Gambón F et al (2006) Rearrangement of only one human IGHV gene is sufficient to generate a wide repertoire of antigen specific antibody responses in transgenic mice. Mol Immunol 43:1827–1835PubMedCrossRefGoogle Scholar
  38. 38.
    Díaz B, Sanjuan I, Gambón F, Loureiro C, Magadán S, González-Fernández A (2009) Generation of a human IgM monoclonal antibody directed against HLA class II molecules: a potential agent in the treatment of haematological malignancies. Cancer Immunol Immunother 58:351–360PubMedCrossRefGoogle Scholar
  39. 39.
    Magadán S, Sanjuán I, Valladares M et al. (2004) A new potential therapeutic agent against B cell malignancies. 12th annual international congress of immunology/4th annual conference of the Federation-of-Clinical-Immunology-Societies (FOCIS), Montreal, Canada, 2004. In: Medimond international proceedings, pp 409–422Google Scholar
  40. 40.
    Nicholson I, Zou X, Popov A, Cook G, Corps E, Humphries S et al (1999) Antibody repertoires of four- and five-feature translocus mice carrying human immunoglobulin heavy chain and kappa and lambda light chain yeast artificial chromosomes. J Immunol 163:6898–6906PubMedGoogle Scholar
  41. 41.
    Xu J, Davis M (2000) Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13:37–45PubMedCrossRefGoogle Scholar
  42. 42.
    Ishida I, Tomizuka K, Yoshida H, Tahara T, Takahashi N, Ohguma A et al (2002) Production of human monoclonal and polyclonal antibodies in TransChromo animals. Cloning Stem Cells 4:91–102PubMedCrossRefGoogle Scholar
  43. 43.
    Green L (1999) Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J Immunol Methods 231:11–23PubMedCrossRefGoogle Scholar
  44. 44.
    Ni J (2009) New technologies for the generation of human monoclonal antibody. Trends Biopharm Ind 5:3–12Google Scholar
  45. 45.
    Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10:345–352PubMedCrossRefGoogle Scholar
  46. 46.
    Galfrè G, Howe S, Milstein C, Butcher G, Howard J (1977) Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature 266:550–552PubMedCrossRefGoogle Scholar
  47. 47.
    Galfrè G, Milstein C (1981) Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol 3:3–46Google Scholar
  48. 48.
    Lefranc M (2003) IMGT, the international ImMunoGeneTics database. Nucleic Acids Res 31:307–310PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Dewar V, Voet P, Denamur F, Smal J (2005) Industrial implementation of in vitro production of monoclonal antibodies. ILAR J 46:307–313PubMedCrossRefGoogle Scholar
  50. 50.
    Nilson B, Lögdberg L, Kastern W, Björck L, Akerström B (1993) Purification of antibodies using protein L-binding framework structures in the light chain variable domain. J Immunol Methods 164:33–40PubMedCrossRefGoogle Scholar
  51. 51.
    Zou X, Xian J, Davies N, Popov A, Brüggemann M (1996) Dominant expression of a 1.3 Mb human Ig kappa locus replacing mouse light chain production. FASEB J 10:1227–1232PubMedGoogle Scholar
  52. 52.
    Taylor L, Carmack C, Schramm S, Mashayekh R, Higgins K, Kuo C et al (1992) A transgenic mouse that expresses a diversity of human sequence heavy and light chain immunoglobulins. Nucleic Acids Res 20:6287–6295PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Lonberg N, Taylor LD, Harding FA, Trounstine M, Higgins KM, Schramm SR et al (1994) Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368:856–859PubMedCrossRefGoogle Scholar
  54. 54.
    Brüggemann M, Neuberger MS (1996) Strategies for expressing human antibody repertoires in transgenic mice. Immunol Today 17:391–397PubMedCrossRefGoogle Scholar
  55. 55.
    Wagner S, Gross G, Cook G, Davies S, Neuberger M (1996) Antibody expression from the core region of the human IgH locus reconstructed in transgenic mice using bacteriophage P1 clones. Genomics 35:405–414PubMedCrossRefGoogle Scholar
  56. 56.
    Mendez M, Green L, Corvalan J, Jia X, Maynard-Currie C, Yang X et al (1997) Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 15:146–156PubMedCrossRefGoogle Scholar
  57. 57.
    Jakobovits A, PubMed P (1998) Production and selection of antigen-specific fully human monoclonal antibodies from mice engineered with human Ig loci. Adv Drug Deliv Rev 1:1–2Google Scholar
  58. 58.
    Tomizuka K, Yoshida H, Uejima H, Kugoh H, Sato K, Ohguma A et al (1997) Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet 16:133–143PubMedCrossRefGoogle Scholar
  59. 59.
    Davies NP, Rosewell IR, Richardson JC, Cook GP, Neuberger MS, Brownstein BH et al (1993) Creation of mice expressing human antibody light chains by introduction of a yeast artificial chromosome containing the core region of the human immunoglobulin kappa locus. Biotechnology (N Y) 11:911–914CrossRefGoogle Scholar
  60. 60.
    Fishwild DM, O’Donnell SL, Bengoechea T, Hudson DV, Harding F, Bernhard SL et al (1996) High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol 14:845–851PubMedCrossRefGoogle Scholar
  61. 61.
    Popov A, Zou X, Xian J, Nicholson I, Brüggemann M (1999) A human immunoglobulin lambda locus is similarly well expressed in mice and humans. J Exp Med 189:1611–1620PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Nitschke L, Kosco M, Köhler G, Lamers M (1993) Immunoglobulin D-deficient mice can mount normal immune responses to thymus-independent and -dependent antigens. Proc Natl Acad Sci USA 90:1887–1891PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Oettgen H, Martin T, Wynshaw-Boris A, Deng C, Drazen J, Leder P (1994) Active anaphylaxis in IgE-deficient mice. Nature 370:367–370PubMedCrossRefGoogle Scholar
  64. 64.
    Erlandsson L, Andersson K, Sigvardsson M, Lycke N, Leanderson T (1998) Mice with an inactivated joining chain locus have perturbed IgM secretion. Eur J Immunol 28:2355–2365PubMedCrossRefGoogle Scholar
  65. 65.
    Zou Y, Takeda S, Rajewsky K (1993) Gene targeting in the Ig kappa locus: efficient generation of lambda chain-expressing B cells, independent of gene rearrangements in Ig kappa. EMBO J 12:811–820PubMedCentralPubMedGoogle Scholar
  66. 66.
    Takeda S, Zou Y, Bluethmann H, Kitamura D, Muller U, Rajewsky K (1993) Deletion of the immunoglobulin kappa chain intron enhancer abolishes kappa chain gene rearrangement in cis but not lambda chain gene rearrangement in trans. EMBO J 12:2329–2336PubMedCentralPubMedGoogle Scholar
  67. 67.
    Chen J, Trounstine M, Kurahara C, Young F, Kuo CC, Xu Y et al (1993) B cell development in mice that lack one or both immunoglobulin kappa light chain genes. EMBO J 12:821–830PubMedCentralPubMedGoogle Scholar
  68. 68.
    Sanchez P, Drapier A, Cohen-Tannoudji M, Colucci E, Babinet C, Cazenave P (1994) Compartmentalization of lambda subtype expression in the B cell repertoire of mice with a disrupted or normal C kappa gene segment. Int Immunol 6:711–719PubMedCrossRefGoogle Scholar
  69. 69.
    Zou X, Xian J, Popov A, Rosewell I, Müller M, Brüggemann M (1995) Subtle differences in antibody responses and hypermutation of lambda light chains in mice with a disrupted chi constant region. Eur J Immunol 25:2154–2162PubMedCrossRefGoogle Scholar
  70. 70.
    Tomizuka K, Shinohara T, Yoshida H, Uejima H, Ohguma A, Tanaka S et al (2000) Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci USA 97:722–727PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Susana Magadán Mompó
    • 1
    • 2
  • África González-Fernández
    • 3
    • 4
  1. 1.Immunology, Biomedical Research Center (CINBIO)VigoSpain
  2. 2.Institute of Biomedical Research (IBIV)Universidad de VigoVigoSpain
  3. 3.Directora del Centro de Investigación Biomédica (CINBIO)VigoSpain
  4. 4.Catedrática de Inmunología Universidad de VigoVigoSpain

Personalised recommendations