Advertisement

Construction of Human Antibody Gene Libraries and Selection of Antibodies by Phage Display

  • André Frenzel
  • Jonas Kügler
  • Sonja Wilke
  • Thomas Schirrmann
  • Michael Hust
Part of the Methods in Molecular Biology book series (MIMB, volume 1060)

Abstract

Antibody phage display is the most commonly used in vitro selection technology and has yielded thousands of useful antibodies for research, diagnostics, and therapy.

The prerequisite for successful generation and development of human recombinant antibodies using phage display is the construction of a high-quality antibody gene library. Here, we describe the methods for the construction of human immune and naive scFv gene libraries.

The success also depends on the panning strategy for the selection of binders from these libraries. In this article, we describe a panning strategy that is high-throughput compatible and allows parallel selection in microtiter plates.

Key words

Antibody Phage display scFv Library Naive library Immune library In vitro selection Panning 

Notes

Acknowledgements

We thank Stefan Dübel for discussion and corrections on the manuscript. We gratefully acknowledge the financial support by the FP7 collaborative projects AffinityProteome (contract 222635) and AFFINOMICS (contract 241481). This review is an updated and revised version of [54, 79] and the professorial dissertation (Habilitation) of Michael Hust.

References

  1. 1.
    Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen Y-J, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song X, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876PubMedCrossRefGoogle Scholar
  2. 2.
    Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G, Lin Y, MacDonald JR, Pang AWC, Shago M, Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA, Beeson KY, McIntosh TC, Remington KA, Abril JF, Gill J, Borman J, Rogers Y-H, Frazier ME, Scherer SW, Strausberg RL, Venter JC (2007) The diploid genome sequence of an individual human. PLoS Biol 5:e254PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Harrison PM, Kumar A, Lang N, Snyder M, Gerstein M (2002) A question of size: the eukaryotic proteome and the problems in defining it. Nucleic Acids Res 30:1083–1090PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Bradbury ARM, Sidhu S, Dübel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29:245–254PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Colwill K, Persson H, Jarvik NE, Wyrzucki A, Wojcik J, Koide A, Kossiakoff AA, Koide S, Sidhu S, Dyson MR, Pershad K, Pavlovic JD, Karatt-Vellatt A, Schofield DJ, Kay BK, McCafferty J, Mersmann M, Meier D, Mersmann J, Helmsing S, Hust M, Dübel S, Berkowicz S, Freemantle A, Spiegel M, Sawyer A, Layton D, Nice E, Dai A, Rocks O, Williton K, Fellouse FA, Hersi K, Pawson T, Nilsson P, Sundberg M, Sjöberg R, Sivertsson A, Schwenk JM, Takanen JO, Hober S, Uhlén M, Dahlgren L-G, Flores A, Johansson I, Weigelt J, Crombet L, Loppnau P, Kozieradzki I, Cossar D, Arrowsmith CH, Edwards AM, Gräslund S (2011) A roadmap to generate renewable protein binders to the human proteome. Nat Methods 8(7):551–558PubMedCrossRefGoogle Scholar
  6. 6.
    Hust M, Dübel S (2004) Mating antibody phage display with proteomics. Trends Biotechnol 22:8–14PubMedCrossRefGoogle Scholar
  7. 7.
    Ohara R, Knappik A, Shimada K, Frisch C, Ylera F, Koga H (2006) Antibodies for proteomic research: comparison of traditional immunization with recombinant antibody technology. Proteomics 6:2638–2646PubMedCrossRefGoogle Scholar
  8. 8.
    Taussig MJ, Stoevesandt O, Borrebaeck CAK, Bradbury AR, Cahill D, Cambillau C, de Daruvar A, Dübel S, Eichler J, Frank R, Gibson TJ, Gloriam D, Gold L, Herberg FW, Hermjakob H, Hoheisel JD, Joos TO, Kallioniemi O, Koegl M, Konthur Z, Korn B, Kremmer E, Krobitsch S, Landegren U, van der Maarel S, McCafferty J, Muyldermans S, Nygren P-A, Palcy S, Plückthun A, Polic B, Przybylski M, Saviranta P, Sawyer A, Sherman DJ, Skerra A, Templin M, Ueffing M, Uhlén M (2007) ProteomeBinders: planning a European resource of affinity reagents for analysis of the human proteome. Nat Methods 4:13–17PubMedCrossRefGoogle Scholar
  9. 9.
    Wingren C, James P, Borrebaeck CAK (2009) Strategy for surveying the proteome using affinity proteomics and mass spectrometry. Proteomics 9:1511–1517PubMedCrossRefGoogle Scholar
  10. 10.
    Hust M, Meyer T, Voedisch B, Rülker T, Thie H, El-Ghezal A, Kirsch MI, Schütte M, Helmsing S, Meier D, Schirrmann T, Dübel S (2011) A human scFv antibody generation pipeline for proteome research. J Biotechnol 152:159–170PubMedCrossRefGoogle Scholar
  11. 11.
    Mersmann M, Meier D, Mersmann J, Helmsing S, Nilsson P, Gräslund S, Colwill K, Hust M, Dübel S, Structural Genomics Consortium (2010) Towards proteome scale antibody selections using phage display. Nat Biotechnol 27:118–128Google Scholar
  12. 12.
    Pershad K, Pavlovic JD, Gräslund S, Nilsson P, Colwill K, Karatt-Vellatt A, Schofield DJ, Dyson MR, Pawson T, Kay BK, McCafferty J (2010) Generating a panel of highly specific antibodies to 20 human SH2 domains by phage display. Protein Eng Des Sel 23:279–288PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Meyer T, Stratmann-Selke J, Meens J, Schirrmann T, Gerlach GF, Frank R, Dübel S, Strutzberg-Minder K, Hust M (2011) Isolation of scFv fragments specific to OmpD of Salmonella typhimurium. Vet Microbiol 147:162–169PubMedCrossRefGoogle Scholar
  14. 14.
    Pitaksajjakul P, Lekcharoensuk P, Upragarin N, Barbas CF, Ibrahim MS, Ikuta K, Ramasoota P (2010) Fab MAbs specific to HA of influenza virus with H5N1 neutralizing activity selected from immunized chicken phage library. Biochem Biophys Res Commun 395:496–501PubMedCrossRefGoogle Scholar
  15. 15.
    Schütte M, Thullier P, Pelat T, Wezler X, Rosenstock P, Hinz D, Kirsch MI, Hasenberg M, Frank R, Schirrmann T, Gunzer M, Hust M, Dübel S (2009) Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus. PLoS One 4:e6625PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Dübel S (2007) Recombinant therapeutic antibodies. Appl Microbiol Biotechnol 74:723–729PubMedCrossRefGoogle Scholar
  17. 17.
    Chahboun S, Hust M, Liu Y, Pelat T, Miethe S, Helmsing S, Jones RG, Sesardic D, Thullier P (2011) Isolation of a nanomolar scFv inhibiting the endopeptidase activity of botulinum toxin A, by single-round panning of an immune phage-displayed library of macaque origin. BMC Biotechnol 11:113PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Pelat T, Hust M, Laffly E, Condemine F, Bottex C, Vidal D, Lefranc M-P, Dübel S, Thullier P (2007) High-affinity, human antibody-like antibody fragment (single-chain variable fragment) neutralizing the lethal factor (LF) of Bacillus anthracis by inhibiting protective antigen-LF complex formation. Antimicrob Agents Chemother 51:2758–2764PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Pelat T, Hust M, Hale M, Lefranc M-P, Dübel S, Thullier P (2009) Isolation of a human-like antibody fragment (scFv) that neutralizes ricin biological activity. BMC Biotechnol 9:60PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Alonso-Ruiz A, Pijoan JI, Ansuategui E, Urkaregi A, Calabozo M, Quintana A (2008) Tumor necrosis factor alpha drugs in rheumatoid arthritis: systematic review and metaanalysis of efficacy and safety. BMC Musculoskelet Disord 9:52PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Peeters M, Price T, Van Laethem J-L (2009) Anti-epidermal growth factor receptor monotherapy in the treatment of metastatic colorectal cancer: where are we today? Oncologist 14:29–39PubMedCrossRefGoogle Scholar
  22. 22.
    Chatenoud L, Bluestone JA (2007) CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat Rev Immunol 7:622–632PubMedCrossRefGoogle Scholar
  23. 23.
    Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23:1147–1157PubMedCrossRefGoogle Scholar
  24. 24.
    Moss ML, Sklair-Tavron L, Nudelman R (2008) Drug insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. Nat Clin Pract Rheumatol 4:300–309PubMedCrossRefGoogle Scholar
  25. 25.
    Dalle S, Thieblemont C, Thomas L, Dumontet C (2008) Monoclonal antibodies in clinical oncology. Anticancer Agents Med Chem 8:523–532PubMedCrossRefGoogle Scholar
  26. 26.
    Jones SE (2008) Metastatic breast cancer: the treatment challenge. Clin Breast Cancer 8:224–233PubMedCrossRefGoogle Scholar
  27. 27.
    Osbourn J, Groves M, Vaughan T (2005) From rodent reagents to human therapeutics using antibody guided selection. Methods 36:61–68PubMedCrossRefGoogle Scholar
  28. 28.
    Getts DR, Getts MT, McCarthy DP, Chastain EML, Miller SD (2010) Have we overestimated the benefit of human(ized) antibodies? MAbs 2:682–694PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Harding FA, Stickler MM, Razo J, DuBridge RB (2010) The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs 2:256–265PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Fishwild DM, O’Donnell SL, Bengoechea T, Hudson DV, Harding F, Bernhard SL, Jones D, Kay RM, Higgins KM, Schramm SR, Lonberg N (1996) High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol 14:845–851PubMedCrossRefGoogle Scholar
  31. 31.
    Jakobovits A (1995) Production of fully human antibodies by transgenic mice. Curr Opin Biotechnol 6:561–566PubMedCrossRefGoogle Scholar
  32. 32.
    Kuroiwa Y, Kasinathan P, Choi YJ, Naeem R, Tomizuka K, Sullivan EJ, Knott JG, Duteau A, Goldsby RA, Osborne BA, Ishida I, Robl JM (2002) Cloned transchromosomic calves producing human immunoglobulin. Nat Biotechnol 20:889–894PubMedCrossRefGoogle Scholar
  33. 33.
    Lonberg N, Huszar D (1995) Human antibodies from transgenic mice. Int Rev Immunol 13:65–93PubMedCrossRefGoogle Scholar
  34. 34.
    Kay J, Matteson EL, Dasgupta B, Nash P, Durez P, Hall S, Hsia EC, Han J, Wagner C, Xu Z, Visvanathan S, Rahman MU (2008) Golimumab in patients with active rheumatoid arthritis despite treatment with methotrexate: a randomized, double-blind, placebo-controlled, dose-ranging study. Arthritis Rheum 58:964–975PubMedCrossRefGoogle Scholar
  35. 35.
    Moroni M, Veronese S, Benvenuti S, Marrapese G, Sartore-Bianchi A, Di Nicolantonio F, Gambacorta M, Siena S, Bardelli A (2005) Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol 6:279–286PubMedCrossRefGoogle Scholar
  36. 36.
    Winter G, Milstein C (1991) Man-made antibodies. Nature 349:293–299PubMedCrossRefGoogle Scholar
  37. 37.
    Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, Benkovic SJ, Lerner RA (1989) Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246:1275–1281PubMedCrossRefGoogle Scholar
  38. 38.
    Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317PubMedCrossRefGoogle Scholar
  39. 39.
    Barbas CF, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci USA 88:7978–7982PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Breitling F, Dübel S, Seehaus T, Klewinghaus I, Little M (1991) A surface expression vector for antibody screening. Gene 104:147–153PubMedCrossRefGoogle Scholar
  41. 41.
    Clackson T, Hoogenboom HR, Griffiths AD, Winter G (1991) Making antibody fragments using phage display libraries. Nature 352:624–628PubMedCrossRefGoogle Scholar
  42. 42.
    Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 19:4133–4137PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222:581–597PubMedCrossRefGoogle Scholar
  44. 44.
    McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554PubMedCrossRefGoogle Scholar
  45. 45.
    Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H, van Hegelsom R, Neer NC, Nastri HG, Rondon IJ, Leeds JA, Hufton SE, Huang L, Kashin I, Devlin M, Kuang G, Steukers M, Viswanathan M, Nixon AE, Sexton DJ, Hoogenboom HR, Ladner RC (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23:344–348PubMedCrossRefGoogle Scholar
  46. 46.
    Holt LJ, Herring C, Jespers LS, Woolven BP, Tomlinson IM (2003) Domain antibodies: proteins for therapy. Trends Biotechnol 21:484–490PubMedCrossRefGoogle Scholar
  47. 47.
    Hust M, Dübel S (2010) Human antibody gene libraries. In: Antibody engineering. Springer, Heidelberg, pp 65–84Google Scholar
  48. 48.
    Mazor Y, Van Blarcom T, Mabry R, Iverson BL, Georgiou G (2007) Isolation of engineered, full-length antibodies from libraries expressed in Escherichia coli. Nat Biotechnol 25:563–565PubMedCrossRefGoogle Scholar
  49. 49.
    Simmons LC, Reilly D, Klimowski L, Raju TS, Meng G, Sims P, Hong K, Shields RL, Damico LA, Rancatore P, Yansura DG (2002) Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 263:133–147PubMedCrossRefGoogle Scholar
  50. 50.
    Hanes J, Plückthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA 94:4937–4942PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    He M, Taussig MJ (1997) Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res 25:5132–5134PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci USA 94:12297–12302PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557PubMedCrossRefGoogle Scholar
  54. 54.
    Frenzel A, Fröde D, Meyer T, Schirrmann T, Hust M (2012) Generating recombinant antibodies for research diagnostics and therapy using phage display. Curr Biotechnol 1:33–41CrossRefGoogle Scholar
  55. 55.
    Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23:1105–1116PubMedCrossRefGoogle Scholar
  56. 56.
    Nieri P, Donadio E, Rossi S, Adinolfi B, Podestà A (2009) Antibodies for therapeutic uses and the evolution of biotechniques. Curr Med Chem 16:753–779PubMedCrossRefGoogle Scholar
  57. 57.
    Thie H, Meyer T, Schirrmann T, Hust M, Dübel S (2008) Phage display derived therapeutic antibodies. Curr Pharm Biotechnol 9:439–446PubMedCrossRefGoogle Scholar
  58. 58.
    Hust M, Dübel S (2005) Phage display vectors for the in vitro generation of human antibody fragments. Methods Mol Biol 295:71–96PubMedGoogle Scholar
  59. 59.
    Qi H, Lu H, Qiu H-J, Petrenko V, Liu A (2012) Phagemid vectors for phage display: properties, characteristics and construction. J Mol Biol 417:129–143PubMedCrossRefGoogle Scholar
  60. 60.
    Shirai H, Kidera A, Nakamura H (1999) H3-rules: identification of CDR-H3 structures in antibodies. FEBS Lett 455:188–197PubMedCrossRefGoogle Scholar
  61. 61.
    Johansen LK, Albrechtsen B, Andersen HW, Engberg J (1995) pFab60: a new, efficient vector for expression of antibody Fab fragments displayed on phage. Protein Eng 8:1063–1067PubMedCrossRefGoogle Scholar
  62. 62.
    Little M, Welschof M, Braunagel M, Hermes I, Christ C, Keller A, Rohrbach P, Kürschner T, Schmidt S, Kleist C, Terness P (1999) Generation of a large complex antibody library from multiple donors. J Immunol Methods 231:3–9PubMedCrossRefGoogle Scholar
  63. 63.
    Welschof M, Terness P, Kipriyanov SM, Stanescu D, Breitling F, Dörsam H, Dübel S, Little M, Opelz G (1997) The antigen-binding domain of a human IgG-anti-F(ab’)2 autoantibody. Proc Natl Acad Sci USA 94:1902–1907PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    de Haard HJ, van Neer N, Reurs A, Hufton SE, Roovers RC, Henderikx P, de Bruïne AP, Arends JW, Hoogenboom HR (1999) A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 274:18218–18230PubMedCrossRefGoogle Scholar
  65. 65.
    McCafferty J, Fitzgerald KJ, Earnshaw J, Chiswell DJ, Link J, Smith R, Kenten J (1994) Selection and rapid purification of murine antibody fragments that bind a transition-state analog by phage display. Appl Biochem Biotechnol 47:157–171, discussion 171–3PubMedCrossRefGoogle Scholar
  66. 66.
    Vaughan TJ, Williams AJ, Pritchard K, Osbourn JK, Pope AR, Earnshaw JC, McCafferty J, Hodits RA, Wilton J, Johnson KS (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14:309–314PubMedCrossRefGoogle Scholar
  67. 67.
    Akamatsu Y, Cole MS, Tso JY, Tsurushita N (1993) Construction of a human Ig combinatorial library from genomic V segments and synthetic CDR3 fragments. J Immunol 151:4651–4659PubMedGoogle Scholar
  68. 68.
    Hoogenboom HR, Winter G (1992) By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J Mol Biol 227:381–388PubMedCrossRefGoogle Scholar
  69. 69.
    Nissim A, Hoogenboom HR, Tomlinson IM, Flynn G, Midgley C, Lane D, Winter G (1994) Antibody fragments from a “single pot” phage display library as immunochemical reagents. EMBO J 13:692–698PubMedCentralPubMedGoogle Scholar
  70. 70.
    Barbas CF, Bain JD, Hoekstra DM, Lerner RA (1992) Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc Natl Acad Sci USA 89:4457–4461PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Desiderio A, Franconi R, Lopez M, Villani ME, Viti F, Chiaraluce R, Consalvi V, Neri D, Benvenuto E (2001) A semi-synthetic repertoire of intrinsically stable antibody fragments derived from a single-framework scaffold. J Mol Biol 310:603–615PubMedCrossRefGoogle Scholar
  72. 72.
    Jirholt P, Ohlin M, Borrebaeck CA, Söderlind E (1998) Exploiting sequence space: shuffling in vivo formed complementarity determining regions into a master framework. Gene 215:471–476PubMedCrossRefGoogle Scholar
  73. 73.
    Söderlind E, Strandberg L, Jirholt P, Kobayashi N, Alexeiva V, Aberg AM, Nilsson A, Jansson B, Ohlin M, Wingren C, Danielsson L, Carlsson R, Borrebaeck CA (2000) Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat Biotechnol 18:852–856PubMedCrossRefGoogle Scholar
  74. 74.
    Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, Hoess A, Wölle J, Plückthun A, Virnekäs B (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296:57–86PubMedCrossRefGoogle Scholar
  75. 75.
    Parmley SF, Smith GP (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73:305–318PubMedCrossRefGoogle Scholar
  76. 76.
    Hawlisch H, Müller M, Frank R, Bautsch W, Klos A, Köhl J (2001) Site-specific anti-C3a receptor single-chain antibodies selected by differential panning on cellulose sheets. Anal Biochem 293:142–145PubMedCrossRefGoogle Scholar
  77. 77.
    Moghaddam A, Borgen T, Stacy J, Kausmally L, Simonsen B, Marvik OJ, Brekke OH, Braunagel M (2003) Identification of scFv antibody fragments that specifically recognise the heroin metabolite 6-monoacetylmorphine but not morphine. J Immunol Methods 280:139–155PubMedCrossRefGoogle Scholar
  78. 78.
    Hust M, Maiss E, Jacobsen H-J, Reinard T (2002) The production of a genus-specific recombinant antibody (scFv) using a recombinant potyvirus protease. J Virol Methods 106:225–233PubMedCrossRefGoogle Scholar
  79. 79.
    Schirrmann T, Hust M (2010) Construction of human antibody gene libraries and selection of antibodies by phage display. Methods Mol Biol 651:177–209PubMedGoogle Scholar
  80. 80.
    Goffinet M, Chinestra P, Lajoie-Mazenc I, Medale-Giamarchi C, Favre G, Faye J-C (2008) Identification of a GTP-bound Rho specific scFv molecular sensor by phage display selection. BMC Biotechnol 8:34PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Lillo AM, Ayriss JE, Shou Y, Graves SW, Bradbury ARM (2011) Development of phage-based single chain Fv antibody reagents for detection of Yersinia pestis. PLoS One 6:e27756PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Hust M, Jostock T, Menzel C, Voedisch B, Mohr A, Brenneis M, Kirsch MI, Meier D, Dübel S (2007) Single chain Fab (scFab) fragment. BMC Biotechnol 7:14PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Rondot S, Koch J, Breitling F, Dübel S (2001) A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol 19:75–78PubMedCrossRefGoogle Scholar
  84. 84.
    Soltes G, Hust M, Ng KKY, Bansal A, Field J, Stewart DIH, Dübel S, Cha S, Wiersma EJ (2007) On the influence of vector design on antibody phage display. J Biotechnol 127:626–637PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Kirsch M, Hülseweh B, Nacke C, Rülker T, Schirrmann T, Marschall H-J, Hust M, Dübel S (2008) Development of human antibody fragments using antibody phage display for the detection and diagnosis of Venezuelan equine encephalitis virus (VEEV). BMC Biotechnol 8:66PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Goletz S, Christensen PA, Kristensen P, Blohm D, Tomlinson I, Winter G, Karsten U (2002) Selection of large diversities of antiidiotypic antibody fragments by phage display. J Mol Biol 315:1087–1097PubMedCrossRefGoogle Scholar
  87. 87.
    Finnern R, Pedrollo E, Fisch I, Wieslander J, Marks JD, Lockwood CM, Ouwehand WH (1997) Human autoimmune anti-proteinase 3 scFv from a phage display library. Clin Exp Immunol 107:269–281PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Mersmann M, Schmidt A, Tesar M, Schöneberg A, Welschof M, Kipriyanov S, Terness P, Little M, Pfizenmaier K, Moosmayer D (1998) Monitoring of scFv selected by phage display using detection of scFv-pIII fusion proteins in a microtiter scale assay. J Immunol Methods 220:51–58PubMedCrossRefGoogle Scholar
  89. 89.
    Hust M, Steinwand M, Al-Halabi L, Helmsing S, Schirrmann T, Dübel S (2009) Improved microtiter plate production of single chain Fv fragments in Escherichia coli. N Biotechnol 25:424–428PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • André Frenzel
    • 1
  • Jonas Kügler
    • 2
  • Sonja Wilke
    • 2
  • Thomas Schirrmann
    • 3
  • Michael Hust
    • 3
  1. 1.Abteilung Biotechnologie Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und BioinformatikBraunschweigGermany
  2. 2.mAb-Factory GmbH, mAb-factory GmbHBraunschweigGermany
  3. 3.Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung BiotechnologieBraunschweigGermany

Personalised recommendations