Membrane Protein Structure Determination: Back to the Membrane

  • Yong Yao
  • Yi Ding
  • Ye Tian
  • Stanley J. Opella
  • Francesca M. Marassi
Part of the Methods in Molecular Biology book series (MIMB, volume 1063)


NMR spectroscopy enables the structures of membrane proteins to be determined in the native-like environment of the phospholipid bilayer membrane. This chapter outlines the methods for membrane protein structural studies using solid-state NMR spectroscopy with samples of membrane proteins incorporated in proteoliposomes or planar lipid bilayers. The methods for protein expression and purification, sample preparation, and NMR experiments are described and illustrated with examples from OmpX and Ail, two bacterial outer membrane proteins that function in bacterial virulence.

Key words

Membrane protein NMR Lipid Bilayer Membrane Protein Expression Structure Barrel 



This research was supported by grants from the National Institutes of Health (R21 GM075917; R21 GM094727; R01 GM100265). The NMR studies utilized the NMR Facility at Sanford-Burnham Medical Research Institute, and the Resource for Molecular Imaging of Proteins at UCSD, each supported by grants from the National Institutes of Health (P30 CA030199; P41 EB002031).


  1. 1.
    White SH, Wiener MC (1994) Determination of the structure of fluid lipid bilayer membranes. In: Disalvo EA, Simon SA (eds) Permeability and stability of lipid bilayers. CRC, Boca Raton, FL, pp 1–19Google Scholar
  2. 2.
    Marrink S, Berkowitz M (1995) Water and membranes. In: Disalvo EA, Simon SA (eds) Permeability and stability of lipid bilayers. CRC, Boca Raton, FL, pp 21–48Google Scholar
  3. 3.
    Engelman DM (1996) Crossing the hydrophobic barrier: insertion of membrane proteins. Science 274:1850–1851PubMedCrossRefGoogle Scholar
  4. 4.
    de Planque MR, Goormaghtigh E, Greathouse DV, Koeppe RE 2nd, Kruijtzer JA, Liskamp RM, de Kruijff B, Killian JA (2001) Sensitivity of single membrane-spanning alpha-helical peptides to hydrophobic mismatch with a lipid bilayer: effects on backbone structure, orientation, and extent of membrane incorporation. Biochemistry 40:5000–5010PubMedCrossRefGoogle Scholar
  5. 5.
    Page RC, Li C, Hu J, Gao FP, Cross TA (2007) Lipid bilayers: an essential environment for the understanding of membrane proteins. Magn Reson Chem 45:S2–S11PubMedCrossRefGoogle Scholar
  6. 6.
    White SH (2009) Biophysical dissection of membrane proteins. Nature 459:344–346PubMedCrossRefGoogle Scholar
  7. 7.
    Cross TA, Sharma M, Yi M, Zhou HX (2011) Influence of solubilizing environments on membrane protein structures. Trends Biochem Sci 36:117–125PubMedCrossRefGoogle Scholar
  8. 8.
    Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230PubMedCrossRefGoogle Scholar
  9. 9.
    Gluck JM, Wittlich M, Feuerstein S, Hoffmann S, Willbold D, Koenig BW (2009) Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. J Am Chem Soc 131:12060–12061PubMedCrossRefGoogle Scholar
  10. 10.
    Raschle T, Hiller S, Yu TY, Rice AJ, Walz T, Wagner G (2009) Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J Am Chem Soc 131:17777–17779PubMedCrossRefGoogle Scholar
  11. 11.
    Shenkarev ZO, Lyukmanova EN, Paramonov AS, Shingarova LN, Chupin VV, Kirpichnikov MP, Blommers MJ, Arseniev AS (2010) Lipid-protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins. J Am Chem Soc 132:5628–5629PubMedCrossRefGoogle Scholar
  12. 12.
  13. 13.
  14. 14.
    Cornelis GR (2000) Molecular and cell biology aspects of plague. Proc Natl Acad Sci USA 97:8778–8783PubMedCrossRefGoogle Scholar
  15. 15.
    Bartra SS, Styer KL, O’Bryant DM, Nilles ML, Hinnebusch BJ, Aballay A, Plano GV (2008) Resistance of yersinia pestis to complement-dependent killing is mediated by the Ail outer membrane protein. Infect Immun 76:612–622PubMedCrossRefGoogle Scholar
  16. 16.
    Tsang TM, Felek S, Krukonis ES (2010) Ail binding to fibronectin facilitates Yersinia pestis binding to host cells and Yop delivery. Infect Immun 78:3358–3368PubMedCrossRefGoogle Scholar
  17. 17.
    Vogt J, Schulz GE (1999) The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. Structure 7:1301–1309PubMedCrossRefGoogle Scholar
  18. 18.
    Fernandez C, Hilty C, Wider G, Guntert P, Wuthrich K (2004) NMR structure of the integral membrane protein OmpX. J Mol Biol 336:1211–1221PubMedCrossRefGoogle Scholar
  19. 19.
    Yamashita S, Lukacik P, Barnard TJ, Noinaj N, Felek S, Tsang TM, Krukonis ES, Hinnebusch BJ, Buchanan SK (2011) Structural insights into Ail-mediated adhesion in Yersinia pestis. Structure 19:1672–1682PubMedCrossRefGoogle Scholar
  20. 20.
    Plesniak LA, Mahalakshmi R, Rypien C, Yang Y, Racic J, Marassi FM (2011) Expression, refolding, and initial structural characterization of the Y. pestis Ail outer membrane protein in lipids. Biochim Biophys Acta 1808:482–489PubMedCrossRefGoogle Scholar
  21. 21.
    Mahalakshmi R, Franzin CM, Choi J, Marassi FM (2007) NMR structural studies of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. Biochim Biophys Acta 1768:3216–3224PubMedCrossRefGoogle Scholar
  22. 22.
    Mahalakshmi R, Marassi FM (2008) Orientation of the Escherichia coli outer membrane protein OmpX in phospholipid bilayer membranes determined by solid-state NMR. Biochemistry 47:6531–6538PubMedCrossRefGoogle Scholar
  23. 23.
    Delaglio F, Kontaxis G, Bax A (2000) Protein structure determination using molecular fragment replacement and NMR dipolar couplings. J Am Chem Soc 122:2142–2143CrossRefGoogle Scholar
  24. 24.
    Tian F, Valafar H, Prestegard JH (2001) A dipolar coupling based strategy for simultaneous resonance assignment and structure determination of protein backbones. J Am Chem Soc 123:11791–11796PubMedCrossRefGoogle Scholar
  25. 25.
    Marassi FM, Opella SJ (2003) Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints. Protein Sci 12:403–411PubMedCrossRefGoogle Scholar
  26. 26.
    Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 104:9615–9620PubMedCrossRefGoogle Scholar
  27. 27.
    Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690PubMedCrossRefGoogle Scholar
  28. 28.
    Wishart DS, Arndt D, Berjanskii M, Tang P, Zhou J, Lin G (2008) CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucleic Acids Res 36:W496–W502PubMedCrossRefGoogle Scholar
  29. 29.
    Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93PubMedCrossRefGoogle Scholar
  30. 30.
    Das R, Baker D (2008) Macromolecular modeling with rosetta. Annu Rev Biochem 77:363–382PubMedCrossRefGoogle Scholar
  31. 31.
    Raman S, Lange OF, Rossi P, Tyka M, Wang X, Aramini J, Liu G, Ramelot TA, Eletsky A, Szyperski T, Kennedy MA, Prestegard J, Montelione GT, Baker D (2010) NMR structure determination for larger proteins using backbone-only data. Science 327:1014–1018PubMedCrossRefGoogle Scholar
  32. 32.
    Berardi MJ, Shih WM, Harrison SC, Chou JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476:109–113PubMedCrossRefGoogle Scholar
  33. 33.
    Das BB, Nothnagel HJ, Lu GJ, Son WS, Tian Y, Marassi FM, Opella SJ (2012) Structure determination of a membrane protein in proteoliposomes. J Am Chem Soc 134: 2047–2056PubMedCrossRefGoogle Scholar
  34. 34.
    Sharma M, Yi M, Dong H, Qin H, Peterson E, Busath DD, Zhou HX, Cross TA (2010) Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science 330:509–512PubMedCrossRefGoogle Scholar
  35. 35.
    Griffin RG (1998) Dipolar recoupling in MAS spectra of biological solids. Nat Struct Biol 5(Suppl):508–512PubMedCrossRefGoogle Scholar
  36. 36.
    Luca S, Heise H, Baldus M (2003) High-resolution solid-state NMR applied to polypeptides and membrane proteins. Acc Chem Res 36:858–865PubMedCrossRefGoogle Scholar
  37. 37.
    McDermott A (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys 38:385–403PubMedCrossRefGoogle Scholar
  38. 38.
    Cross TA, Quine JR (2000) Protein structure in anisotropic environments: development of orientational constraints. Develop Orien Constr 12:55–70Google Scholar
  39. 39.
    Marassi FM (2002) NMR of peptides and proteins in membranes. J Magn Reson 14: 212–224Google Scholar
  40. 40.
    Opella SJ, Marassi FM (2004) Structure determination of membrane proteins by NMR spectroscopy. Chem Rev 104:3587–3606PubMedCrossRefGoogle Scholar
  41. 41.
    Marassi FM, Das BB, Lu GJ, Nothnagel HJ, Park SH, Son WS, Tian Y, Opella SJ (2011) Structure determination of membrane proteins in five easy pieces. Methods 55:363–369PubMedCrossRefGoogle Scholar
  42. 42.
    Singer SJ, Nicholson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731PubMedCrossRefGoogle Scholar
  43. 43.
    Edidin M (1974) Rotational and translational diffusion in membranes. Annu Rev Biophys Bioeng 3:179–201PubMedCrossRefGoogle Scholar
  44. 44.
    Cherry RJ (1975) Protein mobility in membranes. FEBS Lett 55:1–7PubMedCrossRefGoogle Scholar
  45. 45.
    Saffman PG, Delbruck M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci USA 72:3111–3113PubMedCrossRefGoogle Scholar
  46. 46.
    Cherry RJ, Muller U, Schneider G (1977) Rotational diffusion of bacteriorhodopsin in lipid membranes. FEBS Lett 80:465–469PubMedCrossRefGoogle Scholar
  47. 47.
    Kovacs FA, Cross TA (1997) Transmembrane four-helix bundle of influenza a M2 protein channel: structural implications from helix tilt and orientation. Biophys J 73:2511–2517PubMedCrossRefGoogle Scholar
  48. 48.
    Tian F, Song Z, Cross TA (1998) Orientational constraints derived from hydrated powder samples by two-dimensional PISEMA. J Magn Reson 135:227–231PubMedCrossRefGoogle Scholar
  49. 49.
    Cady SD, Goodman C, Tatko CD, DeGrado WF, Hong M (2007) Determining the orientation of uniaxially rotating membrane proteins using unoriented samples: a 2H, 13C, AND 15N solid-state NMR investigation of the dynamics and orientation of a transmembrane helical bundle. J Am Chem Soc 129:5719–5729PubMedCrossRefGoogle Scholar
  50. 50.
    Marassi FM, Opella SJ (2000) A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson 144:150–155PubMedCrossRefGoogle Scholar
  51. 51.
    Wang J, Denny J, Tian C, Kim S, Mo Y, Kovacs F, Song Z, Nishimura K, Gan Z, Fu R, Quine JR, Cross TA (2000) Imaging membrane protein helical wheels. J Magn Reson 144:162–167PubMedCrossRefGoogle Scholar
  52. 52.
    Marassi FM (2001) A simple approach to membrane protein secondary structure and topology based on NMR spectroscopy. Biophys J 80:994–1003PubMedCrossRefGoogle Scholar
  53. 53.
    Nishimura K, Kim S, Zhang L, Cross TA (2002) The closed state of a H + channel helical bundle combining precise orientational and distance restraints from solid state NMR. Biochemistry 41:13170–13177PubMedCrossRefGoogle Scholar
  54. 54.
    Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis A, Marassi FM, Opella SJ (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Biophys J 102(3):422CrossRefGoogle Scholar
  55. 55.
    Asbury T, Quine JR, Achuthan S, Hu J, Chapman MS, Cross TA, Bertram R (2006) PIPATH: an optimized algorithm for generating alpha-helical structures from PISEMA data. J Magn Reson 183:87–95PubMedCrossRefGoogle Scholar
  56. 56.
    Marassi FM, Gesell JJ, Valente AP, Kim Y, Oblatt-Montal M, Montal M, Opella SJ (1999) Dilute spin-exchange assignment of solid-state NMR spectra of oriented proteins: acetylcholine M2 in bilayers. J Biomol NMR 14:141–148PubMedCrossRefGoogle Scholar
  57. 57.
    Marassi FM, Opella SJ (2002) Using pisa pies to resolve ambiguities in angular constraints from PISEMA spectra of aligned proteins. J Biomol NMR 23:239–242PubMedCrossRefGoogle Scholar
  58. 58.
    Tian Y, Schwieters CD, Opella SJ, Marassi FM (2012) AssignFit: a program for simultaneous assignment and structure refinement from solid-state NMR spectra. J Magn Reson 214:42–50PubMedCrossRefGoogle Scholar
  59. 59.
    Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140PubMedCrossRefGoogle Scholar
  60. 60.
    Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162:479–486PubMedCrossRefGoogle Scholar
  61. 61.
    Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293PubMedCrossRefGoogle Scholar
  62. 62.
    Goddard TD, Kneller DG (2004) SPARKY 3. University of California, San FranciscoGoogle Scholar
  63. 63.
    Xhao X, Eden M, Levitt MH (2001) Recoupling of heteronuclear dipolar interactions in solid-state NMR using symmetry-based pulse sequences. J Phys Chem B 342:353–361Google Scholar
  64. 64.
    Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102PubMedCrossRefGoogle Scholar
  65. 65.
    Watts A, Straus SK, Grage SL, Kamihira M, Lam YH, Zhao X (2004) Membrane protein structure determination using solid-state NMR. Methods Mol Biol 278:403–473PubMedGoogle Scholar
  66. 66.
    Franks WT, Wylie BJ, Schmidt HL, Nieuwkoop AJ, Mayrhofer RM, Shah GJ, Graesser DT, Rienstra CM (2008) Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR. Proc Natl Acad Sci USA 105:4621–4626PubMedCrossRefGoogle Scholar
  67. 67.
    Cady SD, Schmidt-Rohr K, Wang J, Soto CS, Degrado WF, Hong M (2010) Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463:689–692PubMedCrossRefGoogle Scholar
  68. 68.
    Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:279–299PubMedCrossRefGoogle Scholar
  69. 69.
    McDermott A, Polenova T, Bockmann A, Zilm KW, Paulson EK, Martin RW, Montelione GT (2000) Partial NMR assignments for uniformly (13C, 15N)-enriched BPTI in the solid state. J Biomol NMR 16:209–219PubMedCrossRefGoogle Scholar
  70. 70.
    Bockmann A, Lange A, Galinier A, Luca S, Giraud N, Juy M, Heise H, Montserret R, Penin F, Baldus M (2003) Solid state NMR sequential resonance assignments and conformational analysis of the 2x10.4 kDa dimeric form of the bacillus subtilis protein Crh. J Biomol NMR 27:323–339PubMedCrossRefGoogle Scholar
  71. 71.
    Igumenova TI, Wand AJ, McDermott AE (2004) Assignment of the backbone resonances for microcrystalline ubiquitin. J Am Chem Soc 126:5323–5331PubMedCrossRefGoogle Scholar
  72. 72.
    Igumenova TI, McDermott AE, Zilm KW, Martin RW, Paulson EK, Wand AJ (2004) Assignments of carbon NMR resonances for microcrystalline ubiquitin. J Am Chem Soc 126:6720–6727PubMedCrossRefGoogle Scholar
  73. 73.
    Marulanda D, Tasayco ML, McDermott A, Cataldi M, Arriaran V, Polenova T (2004) Magic angle spinning solid-state NMR spectroscopy for structural studies of protein interfaces. Resonance assignments of differentially enriched escherichia coli thioredoxin reassembled by fragment complementation. J Am Chem Soc 126:16608–16620PubMedCrossRefGoogle Scholar
  74. 74.
    Mills FD, Antharam VC, Ganesh OK, Elliott DW, McNeill SA, Long JR (2008) The helical structure of surfactant peptide KL4 when bound to POPC: POPG lipid vesicles. Biochemistry 47:8292–8300PubMedCrossRefGoogle Scholar
  75. 75.
    Szeverenyi NM, Sullivan MJ, Maciel GE (1982) Observation of spin exchange by two-dimensional fourier transform 13C cross-polarization-magic angle spinning. J Magn Reson 47:462–475Google Scholar
  76. 76.
    Frey MH, Opella SJ (1984) 13C Spin exchange in amino acids and peptides. J Am Chem Soc 106:4942–4945CrossRefGoogle Scholar
  77. 77.
    Baldus M, Geurts DG, Meier BH (1998) Broadband dipolar recoupling in rotating solids: a numerical comparison of some pulse schemes. Solid State Nucl Magn Reson 11:157–168PubMedCrossRefGoogle Scholar
  78. 78.
    Wu CH, Ramamoorthy A, Opella SJ (1994) High-resolution heteronuclear dipolar solid-state NMR spectroscopy. J Magn Reson 109:270–272CrossRefGoogle Scholar
  79. 79.
    Ramamoorthy A, Wu CH, Opella SJ (1995) Three-dimensional solid-state NMR experiment that correlates the chemical shift and dipolar coupling frequencies of two heteronuclei. J Magn Reson B 107:88–90PubMedCrossRefGoogle Scholar
  80. 80.
    Ramamoorthy A, Opella SJ (1995) Two-dimensional chemical shift/heteronuclear dipolar coupling spectra obtained with polarization inversion spin exchange at the magic angle and magic-angle sample spinning (PISEMAMAS). Solid State Nucl Magn Reson 4:387–392PubMedCrossRefGoogle Scholar
  81. 81.
    Ramamoorthy A, Marassi FM, Zasloff M, Opella SJ (1995) Three-dimensional solid-state NMR spectroscopy of a peptide oriented in membrane bilayers. J Biomol NMR 6:329–334PubMedCrossRefGoogle Scholar
  82. 82.
    Nevzorov AA, Opella SJ (2003) A “magic sandwich” pulse sequence with reduced offset dependence for high-resolution separated local field spectroscopy. J Magn Reson 164:182–186PubMedCrossRefGoogle Scholar
  83. 83.
    Dvinskikh SV, Yamamoto K, Ramamoorthy A (2006) Heteronuclear isotropic mixing separated local field NMR spectroscopy. J Chem Phys 125:34507PubMedCrossRefGoogle Scholar
  84. 84.
    Grant CV, Wu CH, Opella SJ (2010) Probes for high field solid-state NMR of lossy biological samples. J Magn Reson 204:180–188PubMedCrossRefGoogle Scholar
  85. 85.
    Nevzorov AA, Opella SJ (2003) Structural fitting of PISEMA spectra of aligned proteins. J Magn Reson 160:33–39PubMedCrossRefGoogle Scholar
  86. 86.
    Franzin CM, Teriete P, Marassi FM (2007) Structural similarity of a membrane protein in micelles and membranes. J Am Chem Soc 129:8078–8079PubMedCrossRefGoogle Scholar
  87. 87.
    Tian Y, Schwieters CD, Opella SJ, Marassi FM (2011) AssignFit: a program for simultaneous assignment and structure refinement from solid-state NMR spectra. J Magn Reson 214(1):42–50PubMedGoogle Scholar
  88. 88.
    De Angelis AA, Howell SC, Opella SJ (2006) Assigning solid-state NMR spectra of aligned proteins using isotropic chemical shifts. J Magn Reson 183:329–332PubMedCrossRefGoogle Scholar
  89. 89.
    Ramamoorthy A, Gierasch LM, Opella SJ (1996) Three-dimensional solid-state NMR correlation experiment with 1H homonuclear spin exchange. J Magn Reson B 111: 81–84PubMedCrossRefGoogle Scholar
  90. 90.
    Nevzorov AA (2008) Mismatched Hartmann-Hahn conditions cause proton-mediated intermolecular magnetization transfer between dilute low-spin nuclei in NMR of static solids. J Am Chem Soc 130:11282–11283PubMedCrossRefGoogle Scholar
  91. 91.
    Nevzorov AA (2009) High-resolution local field spectroscopy with internuclear correlations. J Magn Reson 201:111–114PubMedCrossRefGoogle Scholar
  92. 92.
    Knox RW, Lu GJ, Opella SJ, Nevzorov AA (2010) A resonance assignment method for oriented-sample solid-state NMR of proteins. J Am Chem Soc 132:8255–8257PubMedCrossRefGoogle Scholar
  93. 93.
    Xu J, Smith PE, Soong R, Ramamoorthy A (2011) A proton spin diffusion based solid-state NMR approach for structural studies on aligned samples. J Phys Chem B 115: 4863–4871PubMedCrossRefGoogle Scholar
  94. 94.
    Ketchem RR, Hu W, Cross TA (1993) High-resolution conformation of gramicidin a in a lipid bilayer by solid-state NMR. Science 261:1457–1460PubMedCrossRefGoogle Scholar
  95. 95.
    Opella SJ, Marassi FM, Gesell JJ, Valente AP, Kim Y, Oblatt-Montal M, Montal M (1999) Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat Struct Biol 6:374–379PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Yong Yao
    • 1
  • Yi Ding
    • 1
  • Ye Tian
    • 1
    • 2
  • Stanley J. Opella
    • 2
  • Francesca M. Marassi
    • 1
  1. 1.Sanford Burnham Medical Research InstituteLa JollaUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of California, San DiegoLa JollaUSA

Personalised recommendations