Measuring Transmembrane Helix Interaction Strengths in Lipid Bilayers Using Steric Trapping

  • Heedeok Hong
  • Yu-Chu Chang
  • James U. Bowie
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1063)

Abstract

We have developed a method to measure strong transmembrane (TM) helix interaction affinities in lipid bilayers that are difficult to measure by traditional dilution methods. The method, called steric trapping, couples dissociation of biotinylated TM helices to a competitive binding by monovalent streptavidin (mSA), so that dissociation is driven by the affinity of mSA for biotin and mSA concentration. By adjusting the binding affinity of mSA through mutation, the method can obtain dissociation constants of TM helix dimers (K d,dimer) over a range of six orders of magnitudes. The K d,dimer limit of measurable target interaction is extended 3–4 orders of magnitude lower than possible by dilution methods. Thus, steric trapping opens up new opportunities to study the folding and assembly of α-helical membrane proteins in lipid bilayer environments. Here we provide detailed methods for applying steric trapping to a TM helix dimer.

Key words

Membrane protein folding Steric trap Glycophorin A dimer Transmembrane helix interaction Monovalent streptavidin Biotinylation 

Notes

Acknowledgements

We thank the Karen Fleming lab (Johns Hopkins University) and the Alice Ting lab (MIT) for providing plasmids. This work was supported by National Institutes of Health (NIH) Grants R01GM063919 and R01GM081783 (to J.U.B.) and start-up funds from Michigan State University (to H.H.). H.H. was supported by the Leukemia and Lymphoma Society Career Development Program (Fellow).

References

  1. 1.
    Moore DT, Berger BW, DeGrado WF (2008) Protein-protein interactions in the membrane: sequence, structural, and biological motifs. Structure 16:991–1001PubMedCrossRefGoogle Scholar
  2. 2.
    MacKenzie KR, Fleming KG (2008) Association energetics of membrane spanning alpha-helices. Curr Opin Struct Biol 18: 412–419PubMedCrossRefGoogle Scholar
  3. 3.
    Senes A (2011) Computational design of membrane proteins. Curr Opin Struct Biol 21:460–466PubMedCrossRefGoogle Scholar
  4. 4.
    Fisher LE, Engelman DM, Sturgis JN (1999) Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain. J Mol Biol 293:639–651PubMedCrossRefGoogle Scholar
  5. 5.
    You M, Li E, Wimley WC, Hristova K (2005) Forster resonance energy transfer in liposomes: measurements of transmembrane helix dimerization in the native bilayer environment. Anal Biochem 340:154–164PubMedCrossRefGoogle Scholar
  6. 6.
    Cristian L, Lear JD, DeGrado WF (2003) Use of thiol-disulfide equilibria to measure the energetics of assembly of transmembrane helices in phospholipid bilayers. Proc Natl Acad Sci USA 100:14772–14777PubMedCrossRefGoogle Scholar
  7. 7.
    Fleming KG, Ackerman AL, Engelman DM (1997) The effect of point mutations on the free energy of transmembrane alpha-helix dimerization. J Mol Biol 272:266–275PubMedCrossRefGoogle Scholar
  8. 8.
    Hong H, Joh NH, Bowie JU, Tamm LK (2009) Methods for measuring the thermodynamic stability of membrane proteins. Methods Enzymol 455:213–236PubMedCrossRefGoogle Scholar
  9. 9.
    Chen L, Novicky L, Merzlyakov M, Hristov T, Hristova K (2010) Measuring the energetics of membrane protein dimerization in mammalian membranes. J Am Chem Soc 132:3628–3635PubMedCrossRefGoogle Scholar
  10. 10.
    Blois TM, Hong H, Kim TH, Bowie JU (2009) Protein unfolding with a steric trap. J Am Chem Soc 131:13914–13915PubMedCrossRefGoogle Scholar
  11. 11.
    Hong H, Blois TM, Cao Z, Bowie JU (2010) Method to measure strong protein-protein interactions in lipid bilayers using a steric trap. Proc Natl Acad Sci USA 107:19802–19807PubMedCrossRefGoogle Scholar
  12. 12.
    Howarth M, Chinnapen DJ, Gerrow K, Dorrestein PC, Grandy MR, Kelleher NL, El-Husseini A, Ting AY (2006) A monovalent streptavidin with a single femtomolar biotin binding site. Nat Methods 3:267–273PubMedCrossRefGoogle Scholar
  13. 13.
    Laitinen OH, Hytonen VP, Nordlund HR, Kulomaa MS (2006) Genetically engineered avidins and streptavidins. Cell Mol Life Sci 63:2992–3017PubMedCrossRefGoogle Scholar
  14. 14.
    Lemmon MA, Flanagan JM, Hunt JF, Adair BD, Bormann BJ, Dempsey CE, Engelman DM (1992) Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J Biol Chem 267: 7683–7689PubMedGoogle Scholar
  15. 15.
    Fleming KG, Engelman DM (2001) Specificity in transmembrane helix-helix interactions can define a hierarchy of stability for sequence variants. Proc Natl Acad Sci USA 98: 14340–14344PubMedCrossRefGoogle Scholar
  16. 16.
    Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 8:921–929PubMedCrossRefGoogle Scholar
  17. 17.
    Orzaez M, Perez-Paya E, Mingarro I (2000) Influence of the C-terminus of the glycophorin A transmembrane fragment on the dimerization process. Protein Sci 9:1246–1253PubMedCrossRefGoogle Scholar
  18. 18.
    Wu SC, Wong SL (2004) Development of an enzymatic method for site-specific incorporation of desthiobiotin to recombinant proteins in vitro. Anal Biochem 331:340–348PubMedCrossRefGoogle Scholar
  19. 19.
    Chilkoti A, Tan PH, Stayton PS (1995) Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex: contributions of tryptophan residues 79, 108, and 120. Proc Natl Acad Sci USA 92:1754–1758PubMedCrossRefGoogle Scholar
  20. 20.
    Doura AK, Kobus FJ, Dubrovsky L, Hibbard E, Fleming KG (2004) Sequence context modulates the stability of a GxxxG-mediated transmembrane helix-helix dimer. J Mol Biol 341:991–998PubMedCrossRefGoogle Scholar
  21. 21.
    Hyre DE, Le Trong I, Freitag S, Stenkamp RE, Stayton PS (2000) Ser45 plays an important role in managing both the equilibrium and transition state energetics of the streptavidin-biotin system. Protein Sci 9:878–885PubMedCrossRefGoogle Scholar
  22. 22.
    Ames BN, Dubin DT (1960) The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem 235: 769–775PubMedGoogle Scholar
  23. 23.
    Fleming KG (2002) Standardizing the free energy change of transmembrane helix-helix interactions. J Mol Biol 323:563–571PubMedCrossRefGoogle Scholar
  24. 24.
    White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28: 319–365PubMedCrossRefGoogle Scholar
  25. 25.
    Fisher LE, Engelman DM, Sturgis JN (2003) Effect of detergents on the association of the glycophorin a transmembrane helix. Biophys J 85:3097–3105PubMedCrossRefGoogle Scholar
  26. 26.
    Hong H, Bowie JU (2011) Dramatic destabilization of transmembrane helix interactions by features of natural membrane environments. J Am Chem Soc 133:11389–11398PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Heedeok Hong
    • 1
    • 2
  • Yu-Chu Chang
    • 3
  • James U. Bowie
    • 3
  1. 1.Department of ChemistryMichigan State UniversityEast LansingUSA
  2. 2.Department of Biochemistry & Molecular BiologyMichigan State UniversityEast LansingUSA
  3. 3.Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations