Measurement of Transmembrane Peptide Interactions in Liposomes Using Förster Resonance Energy Transfer (FRET)

  • Ambalika Khadria
  • Alessandro Senes
Part of the Methods in Molecular Biology book series (MIMB, volume 1063)

Abstract

Present day understanding of the thermodynamic properties of integral membrane proteins (IMPs) lags behind that of water-soluble proteins due to difficulties in mimicking the physiological environment of the IMPs in order to obtain a reversible folded system. Despite such challenges faced in studying these systems, significant progress has been made in the study of the oligomerization of single span transmembrane helices. One of the primary methods available to characterize these systems is based on Förster resonance energy transfer (FRET). FRET is a widely used spectroscopic tool that provides proximity data that can be fitted to obtain the energetics of a system. Here we discuss various technical aspects related to the application of FRET to study transmembrane peptide oligomerization in liposomes. The analysis is based on FRET efficiency relative to the concentration of the peptides in the bilayer (peptide:lipid ratio). Some important parameters that will be discussed include labeling efficiency, sample homogeneity, and equilibration. Furthermore, data analysis has to be performed keeping in mind random colocalization of donors and acceptors in liposome vesicles.

Key words

Integral membrane proteins Transmembrane helix Energetics Thermodynamic equilibrium Free energy of association FRET in liposomes 

References

  1. 1.
    Popot JL, Engelman DM (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29:4031–4037PubMedCrossRefGoogle Scholar
  2. 2.
    MacKenzie KR, Fleming KG (2008) Association energetics of membrane spanning alpha-helices. Curr Opin Struct Biol 18:412–419PubMedCrossRefGoogle Scholar
  3. 3.
    You M, Li E, Wimley WC et al (2005) Förster resonance energy transfer in liposomes: measurements of transmembrane helix dimerization in the native bilayer environment. Anal Biochem 340:154–164PubMedCrossRefGoogle Scholar
  4. 4.
    DeGrado WF, Gratkowski H, Lear JD (2003) How do helix-helix interactions help determine the folds of membrane proteins? Perspectives from the study of homo-oligomeric helical bundles. Protein Sci 12:647–665PubMedCrossRefGoogle Scholar
  5. 5.
    Russ WP, Engelman DM (1999) TOXCAT: a measure of transmembrane helix association in a biological membrane. Proc Natl Acad Sci 96:863–868PubMedCrossRefGoogle Scholar
  6. 6.
    Schneider D, Engelman DM (2003) GALLEX, a measurement of heterologous association of transmembrane helices in a biological membrane. J Biol Chem 278:3105–3111PubMedCrossRefGoogle Scholar
  7. 7.
    Li E, You M, Hristova K (2005) Sodium dodecyl sulfate–polyacrylamide gel electrophoresis and Förster resonance energy transfer suggest weak interactions between fibroblast growth factor receptor 3 (FGFR3) transmembrane domains in the absence of extracellular domains and ligands. Biochemistry 44:352–360PubMedCrossRefGoogle Scholar
  8. 8.
    Li M, Reddy LG, Bennett R et al (1999) A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban. Biophys J 76:2587–2599PubMedCrossRefGoogle Scholar
  9. 9.
    Fisher LE, Engelman DM, Sturgis JN (1999) Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain. J Mol Biol 293:639–651PubMedCrossRefGoogle Scholar
  10. 10.
    Yevgen MM, Posokhov O (2008) A simple “proximity” correction for Förster resonance energy transfer efficiency determination in membranes using lifetime measurements. Anal Biochem 380(1):134–136CrossRefGoogle Scholar
  11. 11.
    Rath A, Deber AM. Design of transmembrane peptides: coping with sticky situationsGoogle Scholar
  12. 12.
    Amblard M, Fehrentz J-A, Martinez J et al (2005) Fundamentals of modern peptide synthesis. Methods Mol Biol 298:3–24PubMedGoogle Scholar
  13. 13.
    Stahl PJ, Cruz JC, Li Y et al (2012) On-the-resin N-terminal modification of long synthetic peptides. Anal Biochem 424:137–139PubMedCrossRefGoogle Scholar
  14. 14.
    Wolber PK, Hudson BS (1979) An analytic solution to the Förster energy transfer problem in two dimensions. Biophys J 28:197–210PubMedCrossRefGoogle Scholar
  15. 15.
    Wimley WC, White SH (2000) Determining the membrane topology of peptides by fluorescence quenching. Biochemistry 39:161–170PubMedCrossRefGoogle Scholar
  16. 16.
    Fisher LE, Engelman DM (2001) High-yield synthesis and purification of an α-helical transmembrane domain. Anal Biochem 293:102–108PubMedCrossRefGoogle Scholar
  17. 17.
    Leszyk JD (2010) Evaluation of the new MALDI matrix 4-chloro-α-cyanocinnamic acid. J Biomol Tech 21:81–91PubMedGoogle Scholar
  18. 18.
    Schick S, Chen L, Li E et al (2010) Assembly of the M2 tetramer is strongly modulated by lipid chain length. Biophys J 99:1810–1817PubMedCrossRefGoogle Scholar
  19. 19.
    Chen L, Merzlyakov M, Cohen T et al (2009) Energetics of ErbB1 transmembrane domain dimerization in lipid bilayers. Biophys J 96:4622–4630PubMedCrossRefGoogle Scholar
  20. 20.
    Merzlyakov M, Hristova K (2008) Forster resonance energy transfer measurements of transmembrane helix dimerization energetics. Methods Enzymol 450:107–127PubMedCrossRefGoogle Scholar
  21. 21.
    You M, Spangler J, Li E et al (2007) Effect of pathogenic cysteine mutations on FGFR3 transmembrane domain dimerization in detergents and lipid bilayers. Biochemistry 46:11039–11046PubMedCrossRefGoogle Scholar
  22. 22.
    Aguilar M-I. Reversed-phase high-performance liquid chromatography, HPLC of peptides and proteins. Humana Press, New Jersey, pp 9–22Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Ambalika Khadria
    • 1
  • Alessandro Senes
    • 1
  1. 1.Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations