Live Imaging of Arabidopsis Development

  • Daniel von Wangenheim
  • Gabor Daum
  • Jan U. Lohmann
  • Ernst K. Stelzer
  • Alexis Maizel
Part of the Methods in Molecular Biology book series (MIMB, volume 1062)


Live cell imaging is an essential methodology for studying the structure, dynamics, and functions of cells in a living plant under normal or stressed growth conditions. Arabidopsis thaliana is perfectly amenable to various live microscopy techniques. In this chapter, we provide guidelines to design live-imaging experiments. We discuss specifically the respective advantage of each microscopy technique, the choice of reporter, and the preparation of the sample. Detailed protocols for imaging of shoot and roots are provided.

Key words

Confocal microscopy Light sheet microscopy 4D imaging Fluorescence 


  1. 1.
    Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069PubMedCrossRefGoogle Scholar
  2. 2.
    Maizel A, von Wangenheim D, Federici F et al (2011) High resolution, live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J 68:377–385PubMedCrossRefGoogle Scholar
  3. 3.
    Sena G, Frentz Z, Birnbaum KD, Leibler S (2011) Quantitation of cellular dynamics in growing Arabidopsis roots with light sheet microscopy. PLoS One 6:e21303PubMedCrossRefGoogle Scholar
  4. 4.
    Chen T, Wang X, Wangenheim von D et al (2011) Probing and tracking organelles in living plant cells. Protoplasma doi:  10.1007/s00709-011-0364-4
  5. 5.
    Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495PubMedCrossRefGoogle Scholar
  6. 6.
    Berg RH, Beachy RN (2008) Fluorescent protein applications in plants. Methods Cell Biol 85:153–177PubMedCrossRefGoogle Scholar
  7. 7.
    Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci U S A 97:3718–3723PubMedCrossRefGoogle Scholar
  8. 8.
    Geldner N, Dénervaud-Tendon V, Hyman DL et al (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59:169–178PubMedCrossRefGoogle Scholar
  9. 9.
    Chapman S, Faulkner C, Kaiserli E et al (2008) The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc Natl Acad Sci U S A 105:20038–20043PubMedCrossRefGoogle Scholar
  10. 10.
    Haseloff J, Siemering KR (2006) The uses of green fluorescent protein in plants. Methods Biochem Anal 47:259–284PubMedGoogle Scholar
  11. 11.
    Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909PubMedCrossRefGoogle Scholar
  12. 12.
    Heisler MG, Ohno C, Das P et al (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911PubMedCrossRefGoogle Scholar
  13. 13.
    Moore I, Samalova M, Kurup S (2006) Transactivated and chemically inducible gene expression in plants. Plant J 45:651–683PubMedCrossRefGoogle Scholar
  14. 14.
    Grefen C, Donald N, Schumacher K, Blatt MR (2010) A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J 64:355–365PubMedCrossRefGoogle Scholar
  15. 15.
    Karimi M, Depicker A, Hilson P (2007) Recombinational cloning with plant gateway vectors. Plant Physiol 145:1144–1154PubMedCrossRefGoogle Scholar
  16. 16.
    Ulker B, Li Y, Rosso MG, Logemann E et al (2008) T-DNA-mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants. Nat Biotechnol 26:1015–1017PubMedCrossRefGoogle Scholar
  17. 17.
    Huang LC, Kohashi C, Vangundy R, Murashige T (1995) Effects of common components on hardness of culture media prepared with gelrite™. Vitro Cell Dev Biol Plant 31:84–89CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Daniel von Wangenheim
    • 1
  • Gabor Daum
    • 2
    • 3
  • Jan U. Lohmann
    • 2
    • 3
  • Ernst K. Stelzer
    • 1
  • Alexis Maizel
    • 3
  1. 1.Physical Biology, Frankfurt Institute for Molecular Life Sciences (FMLS)Goethe Universität Frankfurt am MainFrankfurt am MainGermany
  2. 2.Department of Stem Cell BiologyUniversity of HeidelbergHeidelbergGermany
  3. 3.Centre for Organismal StudiesUniversity of HeidelbergHeidelbergGermany

Personalised recommendations