Arabidopsis Protocols pp 27-51

Part of the Methods in Molecular Biology book series (MIMB, volume 1062)

Using Arabidopsis-Related Model Species (ARMS): Growth, Genetic Transformation, and Comparative Genomics

  • Giorgia Batelli
  • Dong-Ha Oh
  • Matilde Paino D’Urzo
  • Francesco Orsini
  • Maheshi Dassanayake
  • Jian-Kang Zhu
  • Hans J. Bohnert
  • Ray A. Bressan
  • Albino Maggio
Protocol

Abstract

The Arabidopsis-related model species (ARMS) Thellungiella salsuginea and Thellungiella parvula have generated broad interest in salt stress research. While general growth characteristics of these species are similar to Arabidopsis, some aspects of their life cycle require particular attention in order to obtain healthy plants, with a large production of seeds in a relatively short time. This chapter describes basic procedures for growth, maintenance, and Agrobacterium-mediated transformation of ARMS. Where appropriate, differences in requirements between Thellungiella spp. and Arabidopsis are highlighted, along with basic growth requirements of other less studied candidate model species. Current techniques for comparative genomics analysis between Arabidopsis and ARMS are also described in detail.

Key words

Thellungiella spp. Halophytes Germination Seed handling Vernalization Plant care 

References

  1. 1.
    Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273PubMedCrossRefGoogle Scholar
  2. 2.
    Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199PubMedCrossRefGoogle Scholar
  3. 3.
    Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525PubMedCrossRefGoogle Scholar
  4. 4.
    Sanders D (2000) Plant biology: the salty tale of Arabidopsis. Curr Biol 10:486–488CrossRefGoogle Scholar
  5. 5.
    Bohnert HJ, Cushman JC (2000) The ice plant cometh: lessons in abiotic stress tolerance. J Plant Growth Regul 19:334–346CrossRefGoogle Scholar
  6. 6.
    Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963PubMedCrossRefGoogle Scholar
  7. 7.
    Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefGoogle Scholar
  8. 8.
    Cushman JC, Meyer G, Michalowski CB, Schmitt JM, Bohnert HJ (1989) Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. Plant Cell 1:715–725PubMedGoogle Scholar
  9. 9.
    Flowers TJ, Yeo A (1995) Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol 22:875–884CrossRefGoogle Scholar
  10. 10.
    Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29:1220–1234PubMedCrossRefGoogle Scholar
  11. 11.
    Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2:3–12PubMedCrossRefGoogle Scholar
  12. 12.
    Al-Shehbaz IA, O’Kane SL (1995) Placement of Arabidopsis parvula in Thellungiella (Brassicaceae). Novon 5:309–310CrossRefGoogle Scholar
  13. 13.
    Al-Shehbaz IA, O’Kane SL, Price RA (1999) Generic placement of species excluded from Arabidopsis (Brassicaceae). Novon 9:296–307CrossRefGoogle Scholar
  14. 14.
    Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71PubMedCrossRefGoogle Scholar
  15. 15.
    Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu JK (2001) Learning from the Arabidopsis experience: the next gene search paradigm. Plant Physiol 127:1354–1360PubMedCrossRefGoogle Scholar
  16. 16.
    Orsini F, Paino D’Urzo M, Inan G et al (2010) A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana. J Exp Bot 61:3787–3798PubMedCrossRefGoogle Scholar
  17. 17.
    Wu HJ, Zhang Z, Wang J-Y, Oh DH, Dassanayake M, Liu B, Huang Q, Sun HX, Xia R, Wu Y, Wang Y, Yang Z, Liu Y, Zhang W, Zhang H, Chu J, Yan C, Fang S, Zhang J, Wang Y, Zhang F, Wang G, Lee SY, Cheeseman JM, Yang B, Li B, Min J, Yang L, Wang J, Chu C, Chen SY, Bohnert HJ, Zhu JK, Wang XJ, Xie Q (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci U S A 109:12219–12224PubMedCrossRefGoogle Scholar
  18. 18.
    Amtmann A, Bohnert HJ, Bressan RA (2005) Abiotic stress and plant genome evolution. Search for new models. Plant Physiol 138:127–130PubMedCrossRefGoogle Scholar
  19. 19.
    Inan G, Zhang Q, Pinghua L et al (2004) Salt cress: a halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737PubMedCrossRefGoogle Scholar
  20. 20.
    Teusink RS, Rahman M, Bressan RA, Jenks MA (2002) Cuticular waxes on Arabidopsis thaliana close relatives Thellungiella halophila and Thellungiella parvula. Int J Plant Sci 163:309–315CrossRefGoogle Scholar
  21. 21.
    Gong Q, Li P, Ma S, Rupassara I, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839PubMedCrossRefGoogle Scholar
  22. 22.
    Volkov V, Amtmann A (2006) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. Plant J 48:342–353PubMedCrossRefGoogle Scholar
  23. 23.
    Wang B, Davenport RJ, Volkov V, Amtmann A (2006) Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana. J Exp Bot 57:1161–1170PubMedCrossRefGoogle Scholar
  24. 24.
    Oh DH, Gong Q, Ulanov A, Zhang Q, Li Y, Ma W, Yun DJ, Bressan RA, Bohnert HJ (2007) Sodium stress in the halophyte Thellungiella halophila and transcriptional changes in a thsos1-RNA interference line. J Integr Plant Biol 49:1484–1496CrossRefGoogle Scholar
  25. 25.
    Oh DH, Leidi E, Zhang Q et al (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol 151:210–222PubMedCrossRefGoogle Scholar
  26. 26.
    Vera-Estrella R, Barkla BJ, Garcia-Ramirez L, Pantoja O (2005) Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol 139:1507–1517PubMedCrossRefGoogle Scholar
  27. 27.
    Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  28. 28.
    Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815Google Scholar
  29. 29.
    Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A (2004) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant Cell Environ 27:1–14CrossRefGoogle Scholar
  30. 30.
    Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135: 1697–1709PubMedCrossRefGoogle Scholar
  31. 31.
    Wong CE, Li Y, Whitty BR, Diaz-Camino C, Akhter SR, Brandle JE, Golding GB, Weretilnyk EA, Moffatt BA, Griffith M (2005) Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap. Plant Mol Biol 58:561–574PubMedCrossRefGoogle Scholar
  32. 32.
    Wong CE, Li Y, Labbe A, Guevara D et al (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450PubMedCrossRefGoogle Scholar
  33. 33.
    Hu TT, Pattyn P, Bakker EG, Cao J et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481PubMedCrossRefGoogle Scholar
  34. 34.
    Dassanayake M, Oh DH, Haas JS et al (2011) The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 43:913–918PubMedCrossRefGoogle Scholar
  35. 35.
    Wang X, Wang H, Wang J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1040PubMedCrossRefGoogle Scholar
  36. 36.
    Oh DH, Dassanayake M, Haas JS et al (2010) Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. Plant Physiol 154:1040–1052PubMedCrossRefGoogle Scholar
  37. 37.
    Kurtz S, Philippy A, Delcher AL et al (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12PubMedCrossRefGoogle Scholar
  38. 38.
    Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645PubMedCrossRefGoogle Scholar
  39. 39.
    Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403PubMedCrossRefGoogle Scholar
  40. 40.
    Aksoy A, Hale WHG, Dixon JM (1999) Capsella bursa-pastoris L. Medic. as a biomonitor of heavy metals. Sci Total Environ 226:177–186PubMedCrossRefGoogle Scholar
  41. 41.
    Madejon P, Murillo JM, Maranon T, Valdes B, Rossini Oliva S (2005) Thallium accumulation in floral structures of Hirschfeldia incana (L.) Lagreze-Fossat (Brassicaceae). Bull Environ Contam Toxicol 74:1058–1064PubMedCrossRefGoogle Scholar
  42. 42.
    Gisbert C, Clemente R, Navarro-Avino J, Baixauli C, Giner A, Serrano R, Walker DJ, Bernal MP (2006) Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain. Environ Exp Bot 56:19–27CrossRefGoogle Scholar
  43. 43.
    Jimenez-Ambriz G, Petit C, Bourrie I, Dubois S, Olivieri I, Ronce O (2007) Life history variation in the heavy metal tolerant plant Thlaspi caerulescens growing in a network of contaminated and noncontaminated sites in southern France: role of gene flow, selection and phenotypic plasticity. New Phytol 173:199–215PubMedCrossRefGoogle Scholar
  44. 44.
    Bailey CD, Koch MA, Mayer M, Mummenhoff K, O’Kane SL Jr, Warwick SI, Windham MD, Al-Shehbaz IA (2006) Toward a global phylogeny of the Brassicaceae. Mol Biol Evol 23:2142–2160PubMedCrossRefGoogle Scholar
  45. 45.
    Popay AI, Roberts EH (1978) Factors involved in the dormancy and germination of Capsella Bursa- Pastoris (L.) Medik. and Senecio Vulgaris L. J Ecol 58:103–122CrossRefGoogle Scholar
  46. 46.
    Pedras MSC, Montaut S, Zaharia IL, Gai Y, Ward DE (2003) Transformation of the host-selective toxin destruxin B by wild crucifers: probing a detoxification pathway. Phytochemistry 64:957–963PubMedCrossRefGoogle Scholar
  47. 47.
    Johnston SJ, Pepper AE, Hall AE, Jeffrey Chen Z, Hodnett G, Drabek J, Lopez R, James Price H (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235PubMedCrossRefGoogle Scholar
  48. 48.
    Dittmer HJ (1949) Root hair variations in plant species. Am J Bot 36:152–155CrossRefGoogle Scholar
  49. 49.
    Muller K, Tintelnot S, Leubner-Metzger G (2006) Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol 47:864–877PubMedCrossRefGoogle Scholar
  50. 50.
    Santin-Montanya I, Alonso-Prados JL, Villarroya M, Garcıa-Baudin JM (2006) Bioassay for determining sensitivity to sulfosulfuron on seven plant species. J Environ Sci Health B 41:781–793PubMedCrossRefGoogle Scholar
  51. 51.
    Weigel D, Ahn JH, Blazquez MA et al (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013PubMedCrossRefGoogle Scholar
  52. 52.
    Wang Z, Li P, Fredricksen M, Gong Z et al (2004) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Sci 166:609–616CrossRefGoogle Scholar
  53. 53.
    Taji T, Sakurai T, Mochida K et al (2008) Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila. BMC Plant Biol 8:115PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang Y, Lai J, Sun S, Li Y, Liu Y, Liang L, Chen M, Xie Q (2008) Comparison analysis of transcripts from the halophyte Thellungiella halophila. J Integr Plant Biol 50:1327–1335PubMedCrossRefGoogle Scholar
  55. 55.
    Wang W, Wu Y, Li Y et al (2010) A large insert Thellungiella halophila BIBAC library for genomics and identification of stress tolerance genes. Plant Mol Biol 72:91–99PubMedCrossRefGoogle Scholar
  56. 56.
    Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542PubMedCrossRefGoogle Scholar
  57. 57.
    Lysak MA, Koch MA (2011) Phylogeny, genome and karyotype evolution of crucifers (Brassicaceae). In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Springer, New YorkGoogle Scholar
  58. 58.
    Mandáková T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570PubMedCrossRefGoogle Scholar
  59. 59.
    Lyons E, Pedersen B, Kane J et al (2008) Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol 148:1772–1781PubMedCrossRefGoogle Scholar
  60. 60.
    Lyons E, Freeling M (2008) How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J 53: 661–673PubMedCrossRefGoogle Scholar
  61. 61.
    Ansell SW, Stenøien HK, Grundmann M, Schneider H, Hemp A, Bauer N, Russell SJ, Vogel JC (2010) Population structure and historical biogeography of European Arabidopsis lyrata. Heredity 105(6):543–553PubMedCrossRefGoogle Scholar
  62. 62.
    Al-Shehbaz IA, O’Kane SL (2002) Taxonomy and phylogeny of Arabidopsis (Brassicaceae). In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologist, Rockville, MD, pp 1–22Google Scholar
  63. 63.
    Mitchell-Olds T (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441:947–952PubMedCrossRefGoogle Scholar
  64. 64.
    Ratcliffe DA (1994) Arabis petraea. In: Stewart A, Pearman DA, Preston CD (eds) Scarce plants of the British Isles. JNCC, Peterborough, p 51Google Scholar
  65. 65.
    Sandring S, Argen J (2009) Pollinator-mediated selection on floral display and flowering time in the perennial herb Arabidopsis lyrata. Evolution 63:1292–1300PubMedCrossRefGoogle Scholar
  66. 66.
    Thrall PH, Young AG, Burdon JJ (2000) An analysis of mating structure in populations of the annual sea rocket, Cakile maritima (Brassicaceae). Aust J Bot 48:731–738CrossRefGoogle Scholar
  67. 67.
    Barbour MG (1972) Seedling establishment of Cakile maritima at Bodega Head, California. Bull Torrey Bot Club 99:11–16CrossRefGoogle Scholar
  68. 68.
    Maun MA, Lapierre J (1986) Effects of burial by sand on seed germination and seedling emergence of four dune species. Am J Bot 73:450–455CrossRefGoogle Scholar
  69. 69.
    Barbour MG (1970) Germination and early growth of the strand plant Cakile maritime. Bull Torrey Bot Club 97:13–22CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Giorgia Batelli
    • 1
  • Dong-Ha Oh
    • 2
    • 3
  • Matilde Paino D’Urzo
    • 4
  • Francesco Orsini
    • 5
  • Maheshi Dassanayake
    • 2
  • Jian-Kang Zhu
    • 4
  • Hans J. Bohnert
    • 1
    • 2
    • 6
  • Ray A. Bressan
    • 3
    • 4
    • 6
  • Albino Maggio
    • 7
  1. 1.CNR-IGV Institute of Plant GeneticsPorticiItaly
  2. 2.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Division of Applied ScienceGyeongsang National UniversityJinjuSouth Korea
  4. 4.Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteUSA
  5. 5.Department of Agro-Environmental Sciences and TechnologyUniversity of BolognaBolognaItaly
  6. 6.College of ScienceKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  7. 7.Department of Agricultural Engineering and AgronomyUniversity of Naples Federico IIPorticiItaly

Personalised recommendations