Arabidopsis Protocols pp 211-224

Part of the Methods in Molecular Biology book series (MIMB, volume 1062)

The Use of Artificial MicroRNA Technology to Control Gene Expression in Arabidopsis thaliana

  • Andrew L. Eamens
  • Marcus McHale
  • Peter M. Waterhouse
Protocol

Abstract

In plants, double-stranded RNA (dsRNA) is an effective trigger of RNA silencing, and several classes of endogenous small RNA (sRNA), processed from dsRNA substrates by DICER-like (DCL) endonucleases, are essential in controlling gene expression. One such sRNA class, the microRNAs (miRNAs) control the expression of closely related genes to regulate all aspects of plant development, including the determination of leaf shape, leaf polarity, flowering time, and floral identity. A single miRNA sRNA silencing signal is processed from a long precursor transcript of nonprotein-coding RNA, termed the primary miRNA (pri-miRNA). A region of the pri-miRNA is partially self-complementary allowing the transcript to fold back onto itself to form a stem–loop structure of imperfectly dsRNA. Artificial miRNA (amiRNA) technology uses endogenous pri-miRNAs, in which the miRNA and miRNA* (passenger strand of the miRNA duplex) sequences have been replaced with corresponding amiRNA/amiRNA* sequences that direct highly efficient RNA silencing of the targeted gene. Here, we describe the rules for amiRNA design, as well as outline the PCR and bacterial cloning procedures involved in the construction of an amiRNA plant expression vector to control target gene expression in Arabidopsis thaliana.

Key words

miRNA amiRNA RNA silencing Plant expression vector Target gene expression Arabidopsis 

References

  1. 1.
    Reinhart BJ et al (2002) MicroRNAs in plants. Genes Dev 16:1616–1626PubMedCrossRefGoogle Scholar
  2. 2.
    Adenot X et al (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16:927–932PubMedCrossRefGoogle Scholar
  3. 3.
    Borsani O et al (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291PubMedCrossRefGoogle Scholar
  4. 4.
    Onodera Y et al (2005) Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120:613–622PubMedCrossRefGoogle Scholar
  5. 5.
    Pontes O et al (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126:79–92PubMedCrossRefGoogle Scholar
  6. 6.
    Boutet S et al (2003) Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr Biol 13:843–848PubMedCrossRefGoogle Scholar
  7. 7.
    Dunoyer P et al (2004) Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16:1235–1250PubMedCrossRefGoogle Scholar
  8. 8.
    Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019PubMedCrossRefGoogle Scholar
  9. 9.
    Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31–S36PubMedCrossRefGoogle Scholar
  10. 10.
    Park W et al (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495PubMedCrossRefGoogle Scholar
  11. 11.
    Golden TA et al (2002) SHORT INTEGUMENTS1/SUSPENSOR1/CARPEL FACTORY, a Dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis. Plant Physiol 130:808–822PubMedCrossRefGoogle Scholar
  12. 12.
    Gasciolli V et al (2005) Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15:1494–1500PubMedCrossRefGoogle Scholar
  13. 13.
    Xie Z et al (2005) DICER-LIKE4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci U S A 102:12984–12989PubMedCrossRefGoogle Scholar
  14. 14.
    Xie Z et al (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:e104PubMedCrossRefGoogle Scholar
  15. 15.
    Smith NA et al (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407: 319–320PubMedCrossRefGoogle Scholar
  16. 16.
    Stoutjesdijk PA et al (2004) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129:1723–1731CrossRefGoogle Scholar
  17. 17.
    Jackson AL, Linsley PS (2004) Noise amidst the silence: off-target effects of siRNAs? Trends Genet 20:521–524PubMedCrossRefGoogle Scholar
  18. 18.
    Xu P et al (2006) Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiol 142: 429–440PubMedCrossRefGoogle Scholar
  19. 19.
    Senthil-Kumar M, Mysore KS (2011) Caveat of RNAi in plants: the off-target effect. Methods Mol Biol 744:13–25PubMedCrossRefGoogle Scholar
  20. 20.
    Eamens AL et al (2009) The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA 15:2219–2235PubMedCrossRefGoogle Scholar
  21. 21.
    Eamens AL et al (2011) Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana. Mol Plant 4:157–170PubMedCrossRefGoogle Scholar
  22. 22.
    Eamens AL, Waterhouse PM (2011) Vectors and methods for hairpin RNA and artificial microRNA-mediated gene silencing in plants. Methods Mol Biol 701:179–197PubMedCrossRefGoogle Scholar
  23. 23.
    Parizotto EA et al (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242PubMedCrossRefGoogle Scholar
  24. 24.
    Alvarez JP et al (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151PubMedCrossRefGoogle Scholar
  25. 25.
    Niu QW et al (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24: 1420–1428PubMedCrossRefGoogle Scholar
  26. 26.
    Schwab R et al (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133PubMedCrossRefGoogle Scholar
  27. 27.
    Qu J, Ye J, Fang R (2007) Artificial miRNA-mediated virus resistance in plants. J Virol 81:6690–6699PubMedCrossRefGoogle Scholar
  28. 28.
    Mi S et al (2008) Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:1–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Andrew L. Eamens
    • 1
  • Marcus McHale
    • 1
  • Peter M. Waterhouse
    • 1
  1. 1.School of Molecular SciencesUniversity of SydneySydneyAustralia

Personalised recommendations