Tailor-Made Mutations in Arabidopsis Using Zinc Finger Nucleases

  • Yiping Qi
  • Colby G. Starker
  • Feng Zhang
  • Nicholas J. Baltes
  • Daniel F. Voytas
Part of the Methods in Molecular Biology book series (MIMB, volume 1062)


Zinc finger nucleases (ZFNs) are proteins engineered to make site-specific double-strand breaks (DSBs) in a DNA sequence of interest. Imprecise repair of the ZFN-induced DSBs by the nonhomologous end-joining (NHEJ) pathway results in a spectrum of mutations, such as nucleotide substitutions, insertions, and deletions. Here we describe a method for targeted mutagenesis in Arabidopsis with ZFNs, which are engineered by context-dependent assembly (CoDA). This ZFN-induced mutagenesis method is an alternative to other currently available gene knockout or knockdown technologies and is useful for reverse genetic studies.

Key words

Arabidopsis ZFN NHEJ CoDA Mutagenesis 



This work is supported by grants from the National Science Foundation to D.F.V. (DBI 0923827 and MCB 0209818).


  1. 1.
    Alonso JM, Ecker JR (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat Rev Genet 7:524–536PubMedCrossRefGoogle Scholar
  2. 2.
    Alonso JM et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657PubMedCrossRefGoogle Scholar
  3. 3.
    Sessions A et al (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994PubMedCrossRefGoogle Scholar
  4. 4.
    Woody ST et al (2007) The WiscDsLox T-DNA collection: an arabidopsis community resource generated by using an improved high-throughput T-DNA sequencing pipeline. J Plant Res 120:157–165PubMedCrossRefGoogle Scholar
  5. 5.
    McCallum CM et al (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457PubMedCrossRefGoogle Scholar
  6. 6.
    Bush SM, Krysan PJ (2011) iTILLING: a personalized approach to the identification of induced mutations in Arabidopsis. Plant Physiol 154:25–35CrossRefGoogle Scholar
  7. 7.
    Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160PubMedCrossRefGoogle Scholar
  8. 8.
    Bibikova M et al (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21:289–297PubMedCrossRefGoogle Scholar
  9. 9.
    Bitinaite J et al (1998) FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A 95:10570–10575PubMedCrossRefGoogle Scholar
  10. 10.
    Townsend JA et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445PubMedCrossRefGoogle Scholar
  11. 11.
    Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang F et al (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci U S A 107:12028–12033PubMedCrossRefGoogle Scholar
  13. 13.
    Shukla VK et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441PubMedCrossRefGoogle Scholar
  14. 14.
    Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci U S A 107:12034–12039PubMedCrossRefGoogle Scholar
  15. 15.
    Doyon Y et al (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708PubMedCrossRefGoogle Scholar
  16. 16.
    Kim S et al (2011) Preassembled zinc-finger arrays for rapid construction of ZFNs. Nat Methods 8:7PubMedCrossRefGoogle Scholar
  17. 17.
    Ramirez CL et al (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5:374–375PubMedCrossRefGoogle Scholar
  18. 18.
    Maeder ML et al (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301PubMedCrossRefGoogle Scholar
  19. 19.
    Sander JD et al (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8:67–69PubMedCrossRefGoogle Scholar
  20. 20.
    Curtin SJ et al (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156:466–473PubMedCrossRefGoogle Scholar
  21. 21.
    Sander JD, Maeder ML, Joung JK (2011) Engineering designer nucleases with customized cleavage specificities. Curr Protoc Mol Biol Chapter 12, Unit12 13. doi: 10.1002/0471142727.mb1213s96Google Scholar
  22. 22.
    Osborn MJ et al (2011) Synthetic zinc finger nuclease design and rapid assembly. Hum Gene Ther 22:1155–1165PubMedCrossRefGoogle Scholar
  23. 23.
    Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469PubMedCrossRefGoogle Scholar
  24. 24.
    Koncz C et al (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci U S A 86:8467–8471PubMedCrossRefGoogle Scholar
  25. 25.
    Wright DA et al (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 1:1637–1652PubMedCrossRefGoogle Scholar
  26. 26.
    Sander JD et al (2010) ZiFiT (zinc finger targeter): an updated zinc finger engineering tool. Nucleic Acids Res 38:W462–W468PubMedCrossRefGoogle Scholar
  27. 27.
    Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  28. 28.
    Miller JC et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785PubMedCrossRefGoogle Scholar
  29. 29.
    Szymczak AL et al (2004) Correction of multi-gene deficiency in vivo using a single “self-cleaving” 2A peptide-based retroviral vector. Nat Biotechnol 22:589–594PubMedCrossRefGoogle Scholar
  30. 30.
    Guschin DY et al (2010) A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol 649:247–256PubMedCrossRefGoogle Scholar
  31. 31.
    Herrmann F et al (2011) p53 Gene repair with zinc finger nucleases optimised by yeast 1-hybrid and validated by Solexa sequencing. PLoS One 6:e20913PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yiping Qi
    • 1
  • Colby G. Starker
    • 1
  • Feng Zhang
    • 2
  • Nicholas J. Baltes
    • 1
  • Daniel F. Voytas
    • 3
  1. 1.Department of Genetics, Cell Biology & Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Cellectic Plant SciencesSt. PaulUSA
  3. 3.Department of Genetics, Cell Biology and Development, Center for Genome EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations