Regulation of the Mutator System of Transposons in Maize

  • Damon Lisch
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1057)

Abstract

The Mutator system has proved to be an invaluable tool for elucidating gene function via insertional mutagenesis. Its high copy number, high transposition frequency, relative lack of insertion specificity, and ease of use has made it the preferred method for gene tagging in maize. Recent advances in high throughput sequencing of insertion sites, combined with the availability of large numbers of pre-mutagenized and sequence-indexed stocks, ensure that this resource will only be more useful in the years ahead. Muk is a locus that can silence Mu-active lines, making it possible to ameliorate the phenotypic effects of high numbers of active Mu transposons and reduce the copy number of these elements during introgressions.

Key words

Mutator MuDR Gene tagging Epigenetic Maize Transposon 

References

  1. 1.
    Walbot V (1991) The Mutator transposable element family of maize. Genet Eng 13:1–37CrossRefGoogle Scholar
  2. 2.
    Bennetzen JL (1996) The Mutator transposable element system of maize. Curr Top Microbiol Immunol 204:195–229PubMedCrossRefGoogle Scholar
  3. 3.
    Chandler VL, Hardeman KJ (1992) The Mu elements of Zea mays. Adv Genet 30:77–122PubMedCrossRefGoogle Scholar
  4. 4.
    Robertson DS (1978) Characterization of a mutator system in maize. Mutat Res 51:21–28CrossRefGoogle Scholar
  5. 5.
    Candela H, Hake S (2008) The art and design of genetic screens: maize. Nat Rev Genetics 9:192–203Google Scholar
  6. 6.
    Williams-Carrier R et al (2010) Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize. Plant J 63:167–177PubMedGoogle Scholar
  7. 7.
    McCarty D, Meeley R (2009) Transposon resources for forward and reverse genetics in maize. In: Bennetzen J, Hake S (eds) Handbook of maize: genetics and genomics. Springer, Berlin, pp 561–584CrossRefGoogle Scholar
  8. 8.
    Settles AM et al (2007) Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics 8:116PubMedCrossRefGoogle Scholar
  9. 9.
    Lisch D, Jiang H (2009) Mutator and MULE transposons. In: Bennetzen J, Hake S (eds) Handbook of maize: genetics and genomics. Springer, Berlin, pp 277–306CrossRefGoogle Scholar
  10. 10.
    Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66PubMedCrossRefGoogle Scholar
  11. 11.
    Slotkin RK, Freeling M, Lisch D (2003) Mu killer causes the heritable inactivation of the Mutator family of transposable elements in Zea mays. Genetics 165:781–797PubMedGoogle Scholar
  12. 12.
    Slotkin RK, Freeling M, Lisch D (2005) Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat Genet 37:641–644PubMedCrossRefGoogle Scholar
  13. 13.
    Lisch D (2002) Mutator transposons. Trends Plant Sci 7:498–504PubMedCrossRefGoogle Scholar
  14. 14.
    Tan BC et al (2011) Identification of an active new mutator transposable element in maize. G3 (Bethesda) 1:293–302CrossRefGoogle Scholar
  15. 15.
    Dietrich CR et al (2002) Maize Mu transposons are targeted to the 5′ untranslated region of the gl8 gene and sequences flanking Mu target-site duplications exhibit nonrandom nucleotide composition throughout the genome. Genetics 160:697–716PubMedGoogle Scholar
  16. 16.
    Hershberger RJ et al (1995) Characterization of the major transcripts encoded by the regulatory MuDR transposable element of maize. Genetics 140:1087–1098PubMedGoogle Scholar
  17. 17.
    Qin M, Robertson DS, Ellingboe AH (1991) Cloning of the mutator transposable element MuA2, a putative regulator of somatic mutability of the a1-Mum2 allele in maize. Genetics 129:845–854PubMedGoogle Scholar
  18. 18.
    James MG et al (1993) DNA sequence and transcript analysis of transposon MuA2, a regulator of Mutator transposable element activity in maize. Plant Mol Biol 21:1181–1185PubMedCrossRefGoogle Scholar
  19. 19.
    Chomet P et al (1991) Identification of a regulatory transposon that controls the Mutator transposable element system in maize. Genetics 129:261–270PubMedGoogle Scholar
  20. 20.
    Hershberger RJ, Warren CA, Walbot V (1991) Mutator activity in maize correlates with the presence and expression of the Mu transposable element Mu9. Proc Natl Acad Sci USA 88:10198–10202PubMedCrossRefGoogle Scholar
  21. 21.
    Benito M-I, Walbot V (1997) Characterization of the maize Mutator transposable element MURA transposase as a DNA-binding protein. Mol Cell Biol 17:5165–5175PubMedGoogle Scholar
  22. 22.
    Eisen JA, Benito MI, Walbot V (1994) Sequence similarity of putative transposases links the maize Mutator autonomous element and a group of bacterial insertion sequences. Nucleic Acids Res 22:2634–2636PubMedCrossRefGoogle Scholar
  23. 23.
    Hua-Van A, Capy P (2008) Analysis of the DDE motif in the Mutator superfamily. J Mol Evol 67:670–681PubMedCrossRefGoogle Scholar
  24. 24.
    Marquez CP, Pritham EJ (2010) Phantom, a new subclass of Mutator DNA transposons found in insect viruses and widely distributed in animals. Genetics 185:1507–1517PubMedCrossRefGoogle Scholar
  25. 25.
    Pritham EJ, Feschotte C, Wessler SR (2005) Unexpected diversity and differential success of DNA transposons in four species of entamoeba protozoans. Mol Biol Evol 22:1751–1763PubMedCrossRefGoogle Scholar
  26. 26.
    Lisch D, Girard L, Donlin M, Freeling M (1999) Functional analysis of deletion derivatives of the maize transposon MuDR delineates roles for the MURA and MURB proteins. Genetics 151:331–341PubMedGoogle Scholar
  27. 27.
    Woodhouse MR, Freeling M, Lisch D (2006) The mop1 (mediator of paramutation1) mutant progressively reactivates one of the two genes encoded by the MuDR transposon in maize. Genetics 172:579–592PubMedCrossRefGoogle Scholar
  28. 28.
    Raizada MN, Walbot V (2000) The late developmental pattern of Mu transposon excision is conferred by a cauliflower mosaic virus 35S-driven MURA cDNA in transgenic maize. Plant Cell 12:5–21PubMedGoogle Scholar
  29. 29.
    Lisch D (2005) Pack-MULEs: theft on a massive scale. Bioessays 27:353–355PubMedCrossRefGoogle Scholar
  30. 30.
    Jiang N et al (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573PubMedCrossRefGoogle Scholar
  31. 31.
    Walbot V, Rudenko GN (2002) MuDR/Mu transposable elements of maize. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. ASM Press, Washington, DCGoogle Scholar
  32. 32.
    Alleman M, Freeling M (1986) The Mu transposable elements of maize: evidence for transposition and copy number regulation during development. Genetics 112:107–119PubMedGoogle Scholar
  33. 33.
    Doseff A, Martienssen R, Sundaresan V (1991) Somatic excision of the Mu1 transposable element of maize. Nucleic Acids Res 19:579–584PubMedCrossRefGoogle Scholar
  34. 34.
    Britt AB, Walbot V (1991) Products of Mu excision from the Bronze1 gene of Zea-mays. J Cell Biochem Suppl 99Google Scholar
  35. 35.
    Lisch D (1995) Genetic and molecular characterization of the Mutator system in maize. University of California at Berkeley, Berkeley, CAGoogle Scholar
  36. 36.
    Yu W et al (2007) Cytological visualization of DNA transposons and their transposition pattern in somatic cells of maize. Genetics 175:31–39PubMedCrossRefGoogle Scholar
  37. 37.
    Lisch D, Chomet P, Freeling M (1995) Genetic characterization of the Mutator system in maize: behavior and regulation of Mu transposons in a minimal line. Genetics 139:1777–1796PubMedGoogle Scholar
  38. 38.
    Lisch D, Freeling M (1994) Loss of Mutator activity in a minimal line. Maydica 39:289–300Google Scholar
  39. 39.
    Donlin MJ, Lisch D, Freeling M (1995) Tissue-specific accumulation of MURB, a protein encoded by MuDR, the autonomous regulator of the Mutator transposable element family. Plant Cell 7:1989–2000PubMedGoogle Scholar
  40. 40.
    Li J, Wen TJ, Schnable PS (2008) Role of RAD51 in the repair of MuDR-induced double-strand breaks in maize (Zea mays L.). Genetics 178:57–66PubMedCrossRefGoogle Scholar
  41. 41.
    Hsia A-P, Schnable PS (1996) DNA sequence analyses support the role of interrupted gap repair in the origin of internal deletions of the maize transposon, MuDR. Genetics 142:603–618PubMedGoogle Scholar
  42. 42.
    Liu S et al (2009) Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet 5:e1000733PubMedCrossRefGoogle Scholar
  43. 43.
    Fernandes J et al (2004) Genome-wide mutagenesis of Zea mays L. using RescueMu transposons. Genome Biol 5:R82PubMedCrossRefGoogle Scholar
  44. 44.
    Robertson DS, Stinard PS (1989) Genetic analyses of putative two-element systems regulating somatic mutability in Mutator-induced aleurone mutants of maize. Dev Genet 10:482–506CrossRefGoogle Scholar
  45. 45.
    Robertson DS, Stinard PS (1992) Genetic regulation of somatic mutability of two Mu-induced a1 mutants of maize. Theor Appl Genet 84:225–236CrossRefGoogle Scholar
  46. 46.
    O’Reilly C et al (1985) Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1. EMBO J 4:877–882PubMedGoogle Scholar
  47. 47.
    Singh J, Freeling M, Lisch D (2008) A position effect on the heritability of epigenetic silencing. PLoS Genet 4:e1000216PubMedCrossRefGoogle Scholar
  48. 48.
    Robertson DS (1986) Genetic studies on the loss of mu mutator activity in maize. Genetics 113:765–773PubMedGoogle Scholar
  49. 49.
    Rudenko GN, Ono A, Walbot V (2003) Initiation of silencing of maize MuDR/Mu transposable elements. Plant J 33:1013–1025PubMedCrossRefGoogle Scholar
  50. 50.
    Martienssen R, Baron A (1994) Coordinate suppression of mutations caused by Robertson’s mutator transposons in maize. Genetics 136:1157–1170PubMedGoogle Scholar
  51. 51.
    Bennetzen JL (1987) Covalent DNA modification and the regulation of Mutator element transposition in maize. Mol Gen Genet 208:45–51CrossRefGoogle Scholar
  52. 52.
    Chandler VL, Walbot V (1986) DNA modification of a maize transposable element correlates with loss of activity. Proc Natl Acad Sci USA 83:1767–1771PubMedCrossRefGoogle Scholar
  53. 53.
    Walbot V et al (1988) Regulation of mutator activities in maize. Basic Life Sci 47:121–135PubMedGoogle Scholar
  54. 54.
    Brown J, Sundaresan V (1992) Genetic study of the loss and restoration of mutator transposon activity in maize—evidence against dominant-negative regulator associated with loss of activity. Genetics 130:889–898PubMedGoogle Scholar
  55. 55.
    Li H, Freeling M, Lisch D (2010) Epigenetic reprogramming during vegetative phase change in maize. Proc Natl Acad Sci USA 107:22184–22189PubMedCrossRefGoogle Scholar
  56. 56.
    Nogueira FT et al (2007) Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev 21:750–755PubMedCrossRefGoogle Scholar
  57. 57.
    Wang X et al (2009) Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21:1053–1069PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang X et al (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e129PubMedCrossRefGoogle Scholar
  59. 59.
    Lafos M et al (2011) Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet 7:e1002040PubMedCrossRefGoogle Scholar
  60. 60.
    Alleman M et al (2006) An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442:295–298PubMedCrossRefGoogle Scholar
  61. 61.
    Woodhouse MR, Freeling M, Lisch D (2006) Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol 4:e339PubMedCrossRefGoogle Scholar
  62. 62.
    Kim SH, Walbot V (2003) Deletion derivatives of the MuDR regulatory transposon of maize encode antisense transcripts but are not dominant-negative regulators of mutator activities. Plant Cell 15:2430–2447PubMedCrossRefGoogle Scholar
  63. 63.
    Molnar A, Melnyk C, Baulcombe DC (2011) Silencing signals in plants: a long journey for small RNAs. Genome Biol 12:215PubMedCrossRefGoogle Scholar
  64. 64.
    Walbot V, Warren C (1988) Regulation of Mu element copy number in maize lines with an active or inactive Mutator transposable element system. Mol Gen Genet 211:27–34PubMedCrossRefGoogle Scholar
  65. 65.
    McCarty DR et al (2005) Steady-state transposon mutagenesis in inbred maize. Plant J 44:52–61PubMedCrossRefGoogle Scholar
  66. 66.
    Bensen RJ et al (1995) Cloning and characterization of the maize An1 gene. Plant Cell 7:75–84PubMedGoogle Scholar
  67. 67.
    Skibbe DS et al (2009) Mutator transposon activity reprograms the transcriptomes and proteomes of developing maize anthers. Plant J 59:622–633PubMedCrossRefGoogle Scholar
  68. 68.
    Slotkin RK, Freeling M, Lisch D (2007) Mu killer locus available in multiple inbred backgrounds. Maize Genetics Cooperation Newsletter 81Google Scholar
  69. 69.
    Fowler JE, Meuhlbauer GJ, Freeling M (1996) Mosaic analysis of the liguleless3 mutant phenotype in maize by coordinate suppression of mutator-insertion alleles. Genetics 143:489–503PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2013

Authors and Affiliations

  • Damon Lisch
    • 1
  1. 1.Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations