Genetic and Molecular Analyses of UniformMu Transposon Insertion Lines

  • Donald R. McCarty
  • Masaharu Suzuki
  • Charles Hunter
  • Joseph Collins
  • Wayne T. Avigne
  • Karen E. Koch
Part of the Methods in Molecular Biology book series (MIMB, volume 1057)


The UniformMu transposon population is a large public resource for reverse genetics and functional genomics of maize. Users access the collection of UniformMu genetic stocks that are freely distributed by the Maize Cooperation Stock Center using online tools maintained at Genetic and molecular analyses of UniformMu stocks (UFMu insertion lines) typically require development of genotyping assays that use a gene-specific polymerase chain reaction (PCR) to follow segregation of transposon insertions in genes of interest. Here we describe methods for accessing the resource and recommended protocols for genotyping of transposon insertion alleles.

Key words

Robertsons mutator Transposon mutagenesis Transposon genotype Reverse genetics 



This work was supported by grants from the National Science Foundation to D.R. McCarty and K.E. Koch (IOS0703273 and IOS1116561).


  1. 1.
    McCarty DR et al (2005) Steady-state transposon mutagenesis in inbred maize. Plant J 44:52–61PubMedCrossRefGoogle Scholar
  2. 2.
    Settles AM et al (2007) Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics 8:116PubMedCrossRefGoogle Scholar
  3. 3.
    Brown JWS, Sundaresan V (1992) Genetic study of the loss and restoration of Mutator transposon activity in maize – evidence against dominant-negative regulator associated with loss of activity. Genetics 130:889–898PubMedGoogle Scholar
  4. 4.
    Lisch D, Chomet P, Freeling M (1995) Genetic characterization of the mutator system in maize: behavior and regulation of Mu transposons in a minimal line. Genetics 139:1777–1796PubMedGoogle Scholar
  5. 5.
    Dooner HK, Nelson OE (1979) Interaction among C, R and Vp in the control of the Bz glucosyltransferase during endosperm development in maize. Genetics 91:309–315PubMedGoogle Scholar
  6. 6.
    Barkan A, Martienssen RA (1991) Inactivation of maize transposon-Mu suppresses a mutant phenotype by activating an outward-reading promoter near the end of Mu1. Proc Natl Acad Sci USA 88:3502–3506PubMedCrossRefGoogle Scholar
  7. 7.
    May BP et al (2003) Maize-targeted mutagenesis: a knockout resource for maize. Proc Natl Acad Sci USA 100:11541–11546PubMedCrossRefGoogle Scholar
  8. 8.
    Das L, Martienssen RA (1995) Site-selected transposon mutagenesis at the hcf106 locus in maize. Plant Cell 7:287–294PubMedGoogle Scholar
  9. 9.
    Cannon EK et al (2011) POPcorn: an online resource providing access to distributed and diverse maize project data. Int J Plant Genomics 2011:923035PubMedGoogle Scholar
  10. 10.
    Neuffer MG (1993) Growing maize for genetic studies. In: Freeling M, Walbot V (eds) The maize handbook. Springer, New York, pp 197–208Google Scholar
  11. 11.
    Hunter CT et al (2012) Cellulose Synthase-Like D1 is integral to normal cell division, expansion, and leaf development in maize. Plant Physiol 158:708–724PubMedCrossRefGoogle Scholar
  12. 12.
    Suzuki M et al (2006) The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J 45:264–274PubMedCrossRefGoogle Scholar
  13. 13.
    Settles AM, Latshaw S, McCarty DR (2004) Molecular analysis of high-copy insertion sites in maize. Nucleic Acids Res 32:e54PubMedCrossRefGoogle Scholar
  14. 14.
    Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386Google Scholar
  15. 15.
    Schnable PS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2013

Authors and Affiliations

  • Donald R. McCarty
    • 1
  • Masaharu Suzuki
    • 2
  • Charles Hunter
    • 2
  • Joseph Collins
    • 3
  • Wayne T. Avigne
    • 2
  • Karen E. Koch
    • 3
  1. 1.Horticultural Sciences Department, Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleUSA
  2. 2.Plant Molecular and Cellular Biology Program, Horticultural Sciences DepartmentUniversity of FloridaGainesvilleUSA
  3. 3.Plant Molecular and Cellular Biology, Horticultural Sciences DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations