Skip to main content

Epigenetic Biomarker to Determine Replicative Senescence of Cultured Cells

Part of the Methods in Molecular Biology book series (MIMB,volume 1048)

Abstract

Somatic cells change continuously during culture expansion—long-term culture evokes increasing cell size, declining differentiation potential, and ultimate cell cycle arrest upon senescence. These changes are of particular relevance for cellular therapy which necessitates standardized products and reliable quality control. Recently, replicative senescence has been shown to be associated with highly reproducible epigenetic modifications. Here, we describe a simple method to track the state of senescence in mesenchymal stromal cells (MSCs) or fibroblasts by monitoring continuous DNA methylation (DNAm) changes at specific sites in the genome. Six CpG sites have been identified which reveal either linear hypermethylation or hypomethylation with respect to the number of cumulative population doublings (cPDs). Conversely, the DNAm level at these CpG sites can be analyzed—for example, by pyrosequencing of bisulfite-converted DNA—and then used for linear regression models to predict cPDs. Our method provides an epigenetic biomarker to determine the state of senescence in cell preparations.

Key words

  • Replicative senescence
  • Epigenetics
  • Epigenetic senescence signature
  • DNA methylation
  • Mesenchymal stromal cells
  • Fibroblasts

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-62703-556-9_20
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-62703-556-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wagner W, Horn P, Castoldi M et al (2008) Replicative senescence of mesenchymal stem cells—a continuous and organized process. PLoS One 5:e2213

    CrossRef  Google Scholar 

  2. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    PubMed  CrossRef  CAS  Google Scholar 

  3. Kang TW, Yevsa T, Woller N et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479:547–551

    PubMed  CrossRef  CAS  Google Scholar 

  4. Campisi J, d’Adda di FF (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    PubMed  CrossRef  CAS  Google Scholar 

  5. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396:84–88

    PubMed  CrossRef  CAS  Google Scholar 

  6. Bork S, Pfister S, Witt H et al (2010) DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell 9:54–63

    PubMed  CrossRef  CAS  Google Scholar 

  7. Schellenberg A, Lin Q, Schueler H et al (2011) Replicative senescence of mesenchymal stem cells causes DNA-methylation changes which correlate with repressive histone marks. Aging (Albany NY) 3:873–888

    CAS  Google Scholar 

  8. Koch CM, Joussen S, Schellenberg A, Lin Q, Zenke M, Wagner W (2012) Monitoring of cellular senescence by DNA-methylation at specific CpG sites. Aging Cell 11:366–369

    PubMed  CrossRef  CAS  Google Scholar 

  9. Koch C, Suschek CV, Lin Q et al (2011) Specific age-associated DNA methylation changes in human dermal fibroblasts. PLoS One 6:e16679

    PubMed  CrossRef  CAS  Google Scholar 

  10. Koch C, Reck K, Shao K et al (2012) Pluripotent stem cells escape from senescence-associated DNA methylation changes. Genome Res 23(2):248–259

    PubMed  CrossRef  Google Scholar 

  11. Roobrouck VD, Ulloa-Montoya F, Verfaillie CM (2008) Self-renewal and differentiation capacity of young and aged stem cells. Exp Cell Res 314:1937–1944

    PubMed  CrossRef  CAS  Google Scholar 

  12. Wagner W, Bork S, Lepperdinger G et al (2010) How to track cellular aging of mesenchymal stromal cells. Aging (Albany NY) 2:224–230

    CAS  Google Scholar 

  13. Wagner W, Ho AD, Zenke M (2010) Different facets of aging in human mesenchymal stem cells. Tissue Eng Part B Rev 16:445–453

    PubMed  CrossRef  Google Scholar 

  14. Schellenberg A, Stiehl T, Horn P et al (2012) Population dynamics of mesenchymal stromal cells during culture expansion. Cytotherapy 14:401–411

    PubMed  CrossRef  CAS  Google Scholar 

  15. Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    PubMed  CrossRef  CAS  Google Scholar 

  16. Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806

    PubMed  CrossRef  CAS  Google Scholar 

  17. Schallmoser K, Bartmann C, Rohde E et al (2010) Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica 95:867–874

    PubMed  CrossRef  CAS  Google Scholar 

  18. Pavlidis P, Noble WS (2001) Analysis of strain and regional variation in gene expression in mouse brain. Genome Biol 2:42

    CrossRef  Google Scholar 

  19. Bocklandt S, Lin W, Sehl ME et al (2011) Epigenetic predictor of age. PLoS One 6:e14821

    PubMed  CrossRef  CAS  Google Scholar 

  20. Koch CM, Wagner W (2011) Epigenetic-aging-signature to determine age in different tissues. Aging (Albany NY) 3:1018–1027

    CAS  Google Scholar 

  21. Shao K, Koch CM, Gupta MK et al (2013) Induced pluripotent mesenchymal stromal cell clones retain donor-derived differences in DNA methylation profiles. Mol Ther 21(1):240–250

    PubMed  CrossRef  CAS  Google Scholar 

  22. Schallmoser K, Bartmann C, Rohde E et al (2007) Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion 47:1436–1446

    PubMed  CrossRef  CAS  Google Scholar 

  23. Horn P, Bokermann G, Cholewa D et al (2010) Comparison of individual platelet lysates for isolation of human mesenchymal stromal cells. Cytotherapy 12:888–898

    PubMed  CrossRef  CAS  Google Scholar 

  24. Bibikova M, Le J, Barnes R et al (2009) Genome-wide DNA methylation profiling using Infinium assay. Epigenomics 1:177–200

    PubMed  CrossRef  CAS  Google Scholar 

  25. Ehrich M, Nelson MR, Stanssens P et al (2005) Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA 102:15785–15790

    PubMed  CrossRef  CAS  Google Scholar 

  26. Cholewa D, Stiehl T, Schellenberg A et al (2011) Expansion of adipose mesenchymal stromal cells is affected by human platelet lysate and plating density. Cell Transplant 20:1409–1922

    PubMed  CrossRef  Google Scholar 

  27. Lohmann M, Walenda G, Hemeda H et al (2012) Donor Age of human platelet lysate affects proliferation and differentiation of mesenchymal stem cells. PLoS One 7:e37839

    PubMed  CrossRef  CAS  Google Scholar 

  28. Bibikova M, Barnes B, Tsan C et al (2011) High density DNA methylation array with single CpG site resolution. Genomics 98:288–295

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

We thank Anne Schellenberg for critical reading of the manuscript and Qiong Lin for contribution of the multivariate model. RWTH Aachen Medical School has applied for a patent application for the above mentioned method. This work was supported by the excellence initiative of the German federal and state governments within the START Program of the Faculty of Medicine, RWTH Aachen (W.W.), by the Stem Cell Network North Rhine Westphalia (W.W.) and by the Else-Kröner Fresenius Stiftung (W.W. and C.K.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Koch, C.M., Wagner, W. (2013). Epigenetic Biomarker to Determine Replicative Senescence of Cultured Cells. In: Tollefsbol, T. (eds) Biological Aging. Methods in Molecular Biology, vol 1048. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-556-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-556-9_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-555-2

  • Online ISBN: 978-1-62703-556-9

  • eBook Packages: Springer Protocols