Advertisement

Application of DNA Microarray Technology to Gerontological Studies

  • Kiyoshi Masuda
  • Yuki Kuwano
  • Kensei Nishida
  • Kazuhito Rokutan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1048)

Abstract

Gene expression patterns change dramatically in aging and age-related events. The DNA microarray is now recognized as a useful device in molecular biology and widely used to identify the molecular mechanisms of aging and the biological effects of drugs for therapeutic purpose in age-related diseases. Recently, numerous technological advantages have led to the evolution of DNA microarrays and microarray-based techniques, revealing the genomic modification and all transcriptional activity. Here, we show the step-by-step methods currently used in our lab to handling the oligonucleotide microarray and miRNA microarray. Moreover, we introduce the protocols of ribonucleoprotein [RNP] immunoprecipitation followed by microarray analysis (RIP-chip) which reveal the target mRNA of age-related RNA-binding proteins.

Key words

DNA microarray Gerontological study Aging miRNA RNA-binding protein RIP-chip 

Notes

Acknowledgments

The protocols above are based on the protocols establishes in Agilent Technologies (oligonucleotide microarray, and miRNA microarray) and the Laboratory of Molecular Biology and Immunology, National institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD (ribonucleoprotein immunoprecipitation followed by microarray analysis). We would like to thank Myriam Gorospe (NIA/NIH) for important technical assistance. The part of this work was supported by Grants-in-Aid for Scientific Research (C) number 24590943.

References

  1. 1.
    Matheu A, Maraver A, Serrano M (2008) The Arf/p53 pathway in cancer and aging. Cancer Res 68:6031–6034PubMedCrossRefGoogle Scholar
  2. 2.
    Garcia SN, Pereira-Smith O (2008) MRGing chromatin dynamics and cellular senescence. Cell Biochem Biophys 50:133–141PubMedCrossRefGoogle Scholar
  3. 3.
    Kirkland JL, Tchkonia T, Pirtskhalava T et al (2002) Adipogenesis and aging: does aging make fat go MAD? Exp Gerontol 37:757–767PubMedCrossRefGoogle Scholar
  4. 4.
    Salih DA, Brunet A (2008) FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 20:126–136PubMedCrossRefGoogle Scholar
  5. 5.
    Sedivy JM, Banumathy G, Adams PD (2008) Aging by epigenetics-a consequence of chromatin damage? Exp Cell Res 314:1909–1917PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang R, Zheng F (2008) PPAR-gamma and aging: one link through klotho? Kidney Int 74:702–704PubMedCrossRefGoogle Scholar
  7. 7.
    Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379PubMedCrossRefGoogle Scholar
  8. 8.
    Keene JD (2007) RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8:533–543PubMedCrossRefGoogle Scholar
  9. 9.
    Mitchell P, Tollervey D (2000) mRNA stability in eukaryotes. Curr Opin Genet Dev 10:193–198PubMedCrossRefGoogle Scholar
  10. 10.
    Moore MJ (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science 309:1514–1518PubMedCrossRefGoogle Scholar
  11. 11.
    Orphanides G, Reinberg D (2002) A unified theory of gene expression. Cell 108:439–451PubMedCrossRefGoogle Scholar
  12. 12.
    Wang W, Martindale JL, Yang X et al (2005) Increased stability of the p16 mRNA with replicative senescence. EMBO Rep 6:158–164PubMedCrossRefGoogle Scholar
  13. 13.
    Lafarga V, Cuadrado A, Lopez de Silanes I et al (2009) p38 Mitogen-activated protein kinase- and HuR-dependent stabilization of p21(Cip1) mRNA mediates the G(1)/S checkpoint. Mol Cell Biol 29:4341–4351PubMedCrossRefGoogle Scholar
  14. 14.
    Wang W, Furneaux H, Cheng H et al (2000) HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol 20:760–769PubMedCrossRefGoogle Scholar
  15. 15.
    Kullmann M, Gopfert U, Siewe B et al (2002) ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5′UTR. Genes Dev 16:3087–3099PubMedCrossRefGoogle Scholar
  16. 16.
    Lal A, Mazan-Mamczarz K, Kawai T et al (2004) Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. EMBO J 23:3092–3102PubMedCrossRefGoogle Scholar
  17. 17.
    Guo X, Hartley RS (2006) HuR contributes to cyclin E1 deregulation in MCF-7 breast cancer cells. Cancer Res 66:7948–7956PubMedCrossRefGoogle Scholar
  18. 18.
    Guo X, Wu Y, Hartley RS (2010) Cold-inducible RNA-binding protein contributes to human antigen R and cyclin E1 deregulation in breast cancer. Mol Carcinog 49:130–140PubMedGoogle Scholar
  19. 19.
    Kim HH, Yang X, Kuwano Y et al (2008) Modification at HuR(S242) alters HuR localization and proliferative influence. Cell Cycle 7:3371–3377PubMedCrossRefGoogle Scholar
  20. 20.
    Kim HH, Abdelmohsen K, Lal A et al (2008) Nuclear HuR accumulation through phosphorylation by Cdk1. Genes Dev 22:1804–1815PubMedCrossRefGoogle Scholar
  21. 21.
    Wang W, Caldwell MC, Lin S et al (2000) HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. EMBO J 19:2340–2350PubMedCrossRefGoogle Scholar
  22. 22.
    Wang W, Yang X, Cristofalo VJ et al (2001) Loss of HuR is linked to reduced expression of proliferative genes during replicative senescence. Mol Cell Biol 21:5889–5898PubMedCrossRefGoogle Scholar
  23. 23.
    Kakuguchi W, Kitamura T, Kuroshima T et al (2010) HuR Knockdown Changes the Oncogenic Potential of Oral Cancer Cells. Mol Cancer Res 8:520–528PubMedCrossRefGoogle Scholar
  24. 24.
    Lee EK, Kim HH, Kuwano Y et al (2010) hnRNP C promotes APP translation by competing with FMRP for APP mRNA recruitment to P bodies. Nat Struct Mol Biol 17:732–739PubMedCrossRefGoogle Scholar
  25. 25.
    Dean JL, Wait R, Mahtani KR et al (2001) The 3′ untranslated region of tumor necrosis factor alpha mRNA is a target of the mRNA-stabilizing factor HuR. Mol Cell Biol 21:721–730PubMedCrossRefGoogle Scholar
  26. 26.
    Sun L, Stoecklin G, Van Way S et al (2007) Tristetraprolin (TTP)-14-3-3 complex formation protects TTP from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor-alpha mRNA. J Biol Chem 282:3766–3777PubMedCrossRefGoogle Scholar
  27. 27.
    Piecyk M, Wax S, Beck AR et al (2000) TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha. EMBO J 19:4154–4163PubMedCrossRefGoogle Scholar
  28. 28.
    Lu JY, Sadri N, Schneider RJ (2006) Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev 20:3174–3184PubMedCrossRefGoogle Scholar
  29. 29.
    Shim J, Lim H, R Yates J et al (2002) Nuclear export of NF90 is required for interleukin-2 mRNA stabilization. Mol Cell 10:1331–1344PubMedCrossRefGoogle Scholar
  30. 30.
    Hau HH, Walsh RJ, Ogilvie RL et al (2007) Tristetraprolin recruits functional mRNA decay complexes to ARE sequences. J Cell Biochem 100:1477–1492PubMedCrossRefGoogle Scholar
  31. 31.
    Ming XF, Kaiser M, Moroni C (1998) c-jun N-terminal kinase is involved in AUUUA-mediated interleukin-3 mRNA turnover in mast cells. EMBO J 17:6039–6048PubMedCrossRefGoogle Scholar
  32. 32.
    Palanisamy V, Park NJ, Wang J et al (2008) AUF1 and HuR proteins stabilize interleukin-8 mRNA in human saliva. J Dent Res 87:772–776PubMedCrossRefGoogle Scholar
  33. 33.
    Knirsch L, Clerch LB (2000) A region in the 3′ UTR of MnSOD RNA enhances translation of a heterologous RNA. Biochem Biophys Res Commun 272:164–168PubMedCrossRefGoogle Scholar
  34. 34.
    Lal A, Abdelmohsen K, Pullmann R et al (2006) Posttranscriptional derepression of GADD45alpha by genotoxic stress. Mol Cell 22:117–128PubMedCrossRefGoogle Scholar
  35. 35.
    Doller A, Gauer S, Sobkowiak E et al (2009) Angiotensin II induces renal plasminogen activator inhibitor-1 and cyclooxygenase-2 expression post-transcriptionally via activation of the mRNA-stabilizing factor human-antigen R. Am J Pathol 174:1252–1263PubMedCrossRefGoogle Scholar
  36. 36.
    Dixon DA, Balch GC, Kedersha N et al (2003) Regulation of cyclooxygenase-2 expression by the translational silencer TIA-1. J Exp Med 198:475–481PubMedCrossRefGoogle Scholar
  37. 37.
    Buzby JS, Lee SM, Van Winkle P et al (1996) Increased granulocyte-macrophage colony-stimulating factor mRNA instability in cord versus adult mononuclear cells is translation-dependent and associated with increased levels of A + U-rich element binding factor. Blood 88:2889–2897PubMedGoogle Scholar
  38. 38.
    Mazan-Mamczarz K, Galban S, Lopez de Silanes I et al (2003) RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl Acad Sci USA 100:8354–8359PubMedCrossRefGoogle Scholar
  39. 39.
    Abdelmohsen K, Lal A, Kim HH et al (2007) Posttranscriptional orchestration of an anti-apoptotic program by HuR. Cell Cycle 6:1288–1292PubMedCrossRefGoogle Scholar
  40. 40.
    Ghosh M, Aguila HL, Michaud J et al (2009) Essential role of the RNA-binding protein HuR in progenitor cell survival in mice. J Clin Invest 119:3530–3543PubMedCrossRefGoogle Scholar
  41. 41.
    Abdelmohsen K, Pullmann R Jr, Lal A et al (2007) Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell 25:543–557PubMedCrossRefGoogle Scholar
  42. 42.
    Lal A, Kawai T, Yang X et al (2005) Antiapoptotic function of RNA-binding protein HuR effected through prothymosin alpha. EMBO J 24:1852–1862PubMedCrossRefGoogle Scholar
  43. 43.
    Lafon I, Carballes F, Brewer G et al (1998) Developmental expression of AUF1 and HuR, two c-myc mRNA binding proteins. Oncogene 16:3413–3421PubMedCrossRefGoogle Scholar
  44. 44.
    Kim HH, Kuwano Y, Srikantan S et al (2009) HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 23:1743–1748PubMedCrossRefGoogle Scholar
  45. 45.
    Levy NS, Chung S, Furneaux H et al (1998) Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 273:6417–6423PubMedCrossRefGoogle Scholar
  46. 46.
    Nabors LB, Gillespie GY, Harkins L et al (2001) HuR, a RNA stability factor, is expressed in malignant brain tumors and binds to adenine- and uridine-rich elements within the 3′ untranslated regions of cytokine and angiogenic factor mRNAs. Cancer Res 61:2154–2161PubMedGoogle Scholar
  47. 47.
    Meng Z, King PH, Nabors LB et al (2005) The ELAV RNA-stability factor HuR binds the 5′-untranslated region of the human IGF-IR transcript and differentially represses cap-dependent and IRES-mediated translation. Nucleic Acids Res 33:2962–2979PubMedCrossRefGoogle Scholar
  48. 48.
    Abdelmohsen K, Kuwano Y, Kim HH et al (2008) Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence. Biol Chem 389:243–255PubMedCrossRefGoogle Scholar
  49. 49.
    Abdelmohsen K, Gorospe M (2010) Posttranscriptional regulation of cancer traits by HuR. Wiley Interdiscip Rev RNA 1:214–229PubMedCrossRefGoogle Scholar
  50. 50.
    Ida H, Boylan SA, Weigel AL et al (2003) Age-related changes in the transcriptional profile of mouse RPE/choroid. Physiol Genomics 15:258–262PubMedGoogle Scholar
  51. 51.
    Blalock EM, Chen KC, Stromberg AJ et al (2005) Harnessing the power of gene microarrays for the study of brain aging and Alzheimer’s disease: statistical reliability and functional correlation. Ageing Res Rev 4:481–512PubMedCrossRefGoogle Scholar
  52. 52.
    Hamatani T, Falco G, Carter MG et al (2004) Age-associated alteration of gene expression patterns in mouse oocytes. Hum Mol Genet 13:2263–2278PubMedCrossRefGoogle Scholar
  53. 53.
    Park SK, Prolla TA (2005) Gene expression profiling studies of aging in cardiac and skeletal muscles. Cardiovasc Res 66:205–212PubMedCrossRefGoogle Scholar
  54. 54.
    Park SK, Kim K, Page GP et al (2009) Gene expression profiling of aging in multiple mouse strains: identification of aging biomarkers and impact of dietary antioxidants. Aging Cell 8:484–495PubMedCrossRefGoogle Scholar
  55. 55.
    Masuda K, Kuwano Y, Nishida K et al (2012) General RBP expression in human tissues as a function of age. Ageing Res Rev 11:423–431PubMedCrossRefGoogle Scholar
  56. 56.
    Abdelmohsen K, Srikantan S, Kang MJ et al (2012) Regulation of senescence by microRNA biogenesis factors. Ageing Res Rev 11:491–500PubMedCrossRefGoogle Scholar
  57. 57.
    Wang W (2012) Regulatory RNA-binding proteins in senescence. Ageing Res Rev 11:485–490PubMedCrossRefGoogle Scholar
  58. 58.
    Christensen BC, Houseman EA, Marsit CJ et al (2009) Aging and Environmental Exposures Alter Tissue-Specific DNA Methylation Dependent upon CpG Island Context. PLoS Genet 5:e1000602PubMedCrossRefGoogle Scholar
  59. 59.
    Oberdoerffer P, Michan S, McVay M et al (2008) SIRT1 Redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135:907–918PubMedCrossRefGoogle Scholar
  60. 60.
    Fan JB, Chen X, Halushka MK et al (2000) Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays. Genome Res 10:853–860PubMedCrossRefGoogle Scholar
  61. 61.
    Favis R, Day JP, Gerry NP et al (2000) Universal DNA array detection of small insertions and deletions in BRCA1 and BRCA2. Nat Biotechnol 18:561–564PubMedCrossRefGoogle Scholar
  62. 62.
    Begus-Nahrmann Y, Lechel A, Obenauf AC et al (2009) p53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice. Nat Genet 41:1138–1143PubMedCrossRefGoogle Scholar
  63. 63.
    Liang R, Bates DJ, Wang E (2009) Epigenetic control of MicroRNA expression and aging. Curr Genomics 10:184–193PubMedCrossRefGoogle Scholar
  64. 64.
    Chen P, Lepikhova T, Hu Y et al (2011) Comprehensive exon array data processing method for quantitative analysis of alternative spliced variants. Nucleic Acids Res 39:e123PubMedCrossRefGoogle Scholar
  65. 65.
    Hardiman G (2004) Microarray platforms–comparisons and contrasts. Pharmacogenomics 5:487–502PubMedCrossRefGoogle Scholar
  66. 66.
    Barnes M, Freudenberg J, Thompson S et al (2005) Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms. Nucleic Acids Res 33:5914–5923PubMedCrossRefGoogle Scholar
  67. 67.
    Vomelova I, Vanickova Z, Sedo A (2009) Methods of RNA purification. All ways (should) lead to Rome. Folia Biol (Praha) 55:243–251Google Scholar
  68. 68.
    Li J, Pankratz M, Johnson JA (2002) Differential gene expression patterns revealed by oligonucleotide versus long cDNA arrays. Toxicol Sci 69:383–390PubMedCrossRefGoogle Scholar
  69. 69.
    Tan PK, Downey TJ, Spitznagel EL Jr et al (2003) Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res 31:5676–5684PubMedCrossRefGoogle Scholar
  70. 70.
    Shi L, Reid LH, Jones WD et al (2006) The MicroArray quality control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161PubMedCrossRefGoogle Scholar
  71. 71.
    Reimers M (2010) Making informed choices about microarray data analysis. PLoS Comput Biol 6:e1000786PubMedCrossRefGoogle Scholar
  72. 72.
    Fan X, Lobenhofer EK, Chen M et al (2010) Consistency of predictive signature genes and classifiers generated using different microarray platforms. Pharmacogenomics J 10:247–257PubMedCrossRefGoogle Scholar
  73. 73.
    Luo J, Schumacher M, Scherer A et al (2010) A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenomics J 10:278–291PubMedCrossRefGoogle Scholar
  74. 74.
    Shi L, Campbell G, Jones WD et al (2010) The MicroArray quality control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol 28:827–838PubMedCrossRefGoogle Scholar
  75. 75.
    Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet 32(Suppl):490–495PubMedCrossRefGoogle Scholar
  76. 76.
    Wang H, Ach RA, Curry B (2007) Direct and sensitive miRNA profiling from low-input total RNA. RNA 13:151–159PubMedCrossRefGoogle Scholar
  77. 77.
    Hughes TR, Mao M, Jones AR et al (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 19:342–347PubMedCrossRefGoogle Scholar
  78. 78.
    Masuda K, Abdelmohsen K, Kim MM et al (2011) Global dissociation of HuR-mRNA complexes promotes cell survival after ionizing radiation. EMBO J 30:1040–1053PubMedCrossRefGoogle Scholar
  79. 79.
    Mukherjee N, Corcoran DL, Nusbaum JD et al (2011) Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell 43:327–339PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2013

Authors and Affiliations

  • Kiyoshi Masuda
    • 1
  • Yuki Kuwano
    • 1
  • Kensei Nishida
    • 1
  • Kazuhito Rokutan
    • 1
  1. 1.Department of Stress ScienceInstitute of Health Biosciences, The University of Tokushima Graduate SchoolTokushimaJapan

Personalised recommendations