Method for Measuring Single-Molecule Adhesion Forces and Attachment Lifetimes of Protein–Membrane Interactions

  • Serapion Pyrpassopoulos
  • Henry Shuman
  • E. Michael Ostap
Part of the Methods in Molecular Biology book series (MIMB, volume 1046)


Many proteins that reside in the cytoplasm bind directly to cell membranes and play roles in signaling, adhesion, metabolism, cell structure, and cell motility. Several of these membrane-binding proteins, especially cytoskeletal proteins, have mechanical functions that result in the transmission of forces to the plasma membrane and organelle-membranes. Despite the importance of these interactions, remarkably little is known about the mechanical properties of the bonds between membranes and proteins. In this chapter, we describe a single-molecule, optical-trapping method for the measurement of protein–membrane adhesion forces and force-dependent attachment-lifetimes.

Key words

Optical tweezers Adhesion force Single molecule Myosin-I Phosphoinositide Supported lipid bilayer Membrane 



This work was supported by a grant from the NIH (GM057247) to E.M.O.


  1. 1.
    Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9(2):99–111PubMedCrossRefGoogle Scholar
  2. 2.
    Levental I, Grzybek M, Simons K (2010) Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 49(30):6305–6316PubMedCrossRefGoogle Scholar
  3. 3.
    McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438(7068):605–611PubMedCrossRefGoogle Scholar
  4. 4.
    Sheetz MP, Sable JE, Dobereiner HG (2006) Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35:417–434PubMedCrossRefGoogle Scholar
  5. 5.
    Hokanson DE, Laakso JM, Lin T, Sept D, Ostap EM (2006) Myo1c binds phosphoinositides through a putative pleckstrin homology domain. Mol Biol Cell 17(11):4856–4865PubMedCrossRefGoogle Scholar
  6. 6.
    Dippold HC et al (2009) GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 139(2):337–351PubMedCrossRefGoogle Scholar
  7. 7.
    McConnell RE, Tyska MJ (2010) Leveraging the membrane-cytoskeleton interface with myosin-1. Trends Cell Biol 20(7):418–426PubMedCrossRefGoogle Scholar
  8. 8.
    Greenberg MJ, Ostap EM (2013) Regulation and control of myosin-I by the motor and light chain-binding domains. Trends Cell Biol 23:81–89PubMedCrossRefGoogle Scholar
  9. 9.
    Feeser EA, Ignacio CM, Krendel M, Ostap EM (2010) Myo1e binds anionic phospholipids with high affinity. Biochemistry 49:9353–9360PubMedCrossRefGoogle Scholar
  10. 10.
    Pyrpassopoulos S, Feeser EA, Mazerik JN, Tyska MJ, Ostap EM (2012) Membrane-bound Myo1c powers asymmetric motility of actin filaments. Curr Biol 22(18):1688–1692PubMedCrossRefGoogle Scholar
  11. 11.
    Zot HG, Doberstein SK, Pollard TD (1992) Myosin-I moves actin filaments on a phospholipid substrate: implications for membrane targeting. J Cell Biol 116(2):367–376PubMedCrossRefGoogle Scholar
  12. 12.
    Pyrpassopoulos S, Shuman H, Ostap EM (2010) Single-molecule adhesion forces and attachment lifetimes of myosin-I phosphoinositide interactions. Biophys J 99(12):3916–3922PubMedCrossRefGoogle Scholar
  13. 13.
    McKenna JM, Ostap EM (2009) Kinetics of the interaction of Myo1c with phosphoinositides. J Biol Chem 284(42):28650–28659PubMedCrossRefGoogle Scholar
  14. 14.
    Tang N, Lin T, Ostap EM (2002) Dynamics of Myo1c (myosin-ibeta ) lipid binding and dissociation. J Biol Chem 277(45):42763–42768PubMedCrossRefGoogle Scholar
  15. 15.
    Veigel C, Bartoo ML, White DC, Sparrow JC, Molloy JE (1998) The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys J 75(3):1424–1438PubMedCrossRefGoogle Scholar
  16. 16.
    Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809PubMedCrossRefGoogle Scholar
  17. 17.
    Batters C, Veigel C (2011) Using optical tweezers to study the fine details of myosin ATPase mechanochemical cycle. Methods Mol Biol 778:97–109PubMedCrossRefGoogle Scholar
  18. 18.
    Takagi Y, Homsher EE, Goldman YE, Shuman H (2006) Force generation in single conventional actomyosin complexes under high dynamic load. Biophys J 90(4):1295–1307PubMedCrossRefGoogle Scholar
  19. 19.
    Litvinov RI, Bennett JS, Weisel JW, Shuman H (2005) Multi-step fibrinogen binding to the integrin (alpha)IIb(beta)3 detected using force spectroscopy. Biophys J 89(4):2824–2834PubMedCrossRefGoogle Scholar
  20. 20.
    Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618–627PubMedCrossRefGoogle Scholar
  21. 21.
    Evans E (2001) Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct 30:105–128PubMedCrossRefGoogle Scholar
  22. 22.
    Dudko OK, Hummer G, Szabo A (2008) Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc Natl Acad Sci USA 105(41):15755–15760PubMedCrossRefGoogle Scholar
  23. 23.
    Galneder R et al (2001) Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology. Biophys J 80(5):2298–2309PubMedCrossRefGoogle Scholar
  24. 24.
    Pucadyil TJ, Schmid SL (2010) Supported bilayers with excess membrane reservoir: a template for reconstituting membrane budding and fission. Biophys J 99(2):517–525PubMedCrossRefGoogle Scholar
  25. 25.
    Huang C, Mason JT (1978) Geometric packing constraints in egg phosphatidylcholine vesicles. Proc Natl Acad Sci USA 75(1):308–310PubMedCrossRefGoogle Scholar
  26. 26.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numerical revipes in C++. Cambridge University Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Serapion Pyrpassopoulos
    • 1
  • Henry Shuman
    • 1
  • E. Michael Ostap
    • 1
  1. 1.Department of PhysiologyPennsylvania Muscle Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations