Activating the NLRP3 Inflammasome Using the Amyloidogenic Peptide IAPP

  • Clara Westwell-Roper
  • Aisling Dunne
  • Man Lyang Kim
  • C. Bruce Verchere
  • Seth L. Masters
Part of the Methods in Molecular Biology book series (MIMB, volume 1040)


In addition to several other extracellular substances, phagocytosis of amyloid-forming peptides can perturb cellular homeostasis, leading to activation of the cytoplasmic innate immune receptor NLRP3. Once triggered, NLRP3 forms an inflammasome complex that ultimately cleaves pro-IL-1β and pro-IL-18 into their mature, secreted forms. Here we describe a protocol by which one type of amyloidogenic peptide, islet amyloid polypeptide (IAPP, otherwise known as amylin) can be prepared and used to stimulate myeloid cells in vitro to engage the NLRP3 inflammasome. Methods for measuring the ensuing inflammasome activation are also described. Although initially soluble, IAPP monomers rapidly aggregate in solution to form oligomers and subsequently insoluble amyloid fibrils. More work is required to examine how this transition influences inflammasome activation for different types of amyloid. The course of amyloid formation and corresponding inflammatory capacity of these pre-fibrillar species following uptake also requires further examination, and we hope that our protocols are useful in these endeavors. While these protocols are restricted to examination of synthetic IAPP, isolation of IAPP aggregates from human and transgenic mouse pancreas will be required to definitively determine the proinflammatory effects of endogenous IAPP oligomers and fibrils.

Key words

Inflammasome Amyloid Innate immunology NLR IAPP 



The authors would like to thank Ben A. Croker for initially optimizing the IL-18 ELISA protocol. S.L.M. is supported by a fellowship from the National Health and Medical Research Council of Australia (516783). C.W.R. is supported by a Vanier Canada Graduate Scholarship and C.B.V. by grants from the Canadian Institutes of Health Research (MOP-14862) and 20R66631 and the Canadian Diabetes Association (OG-3-11-3413-CV).


  1. 1.
    Tukel C, Wilson RP, Nishimori JH, Pezeshki M, Chromy BA, Baumler AJ (2009) Responses to amyloids of microbial and host origin are mediated through toll-like receptor 2. Cell Host Microbe 6(1):45–53. doi: 10.1016/j.chom.2009.05.020, doi: S1931-3128(09)00213-3 [pii] PubMedCrossRefGoogle Scholar
  2. 2.
    Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, Lacy-Hulbert A, El Khoury J, Golenbock DT, Moore KJ (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11(2):155–161. doi: 10.1038/ni.1836, doi: ni.1836 [pii] PubMedCrossRefGoogle Scholar
  3. 3.
    Ather JL, Ckless K, Martin R, Foley KL, Suratt BT, Boyson JE, Fitzgerald KA, Flavell RA, Eisenbarth SC, Poynter ME (2011) Serum amyloid A activates the NLRP3 inflammasome and promotes Th17 allergic asthma in mice. J Immunol 187(1):64–73. doi: 10.4049/jimmunol.1100500, doi: jimmunol.1100500 [pii] PubMedCrossRefGoogle Scholar
  4. 4.
    Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9(8):857–865. doi: 10.1038/ni.1636, doi: ni.1636 [pii] PubMedCrossRefGoogle Scholar
  5. 5.
    Niemi K, Teirila L, Lappalainen J, Rajamaki K, Baumann MH, Oorni K, Wolff H, Kovanen PT, Matikainen S, Eklund KK (2011) Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway. J Immunol 186(11):6119–6128. doi: 10.4049/jimmunol.1002843, doi: jimmunol.1002843 [pii] PubMedCrossRefGoogle Scholar
  6. 6.
    Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z, Mullooly N, Mielke LA, Harris J, Coll RC, Mills KH, Mok KH, Newsholme P, Nunez G, Yodoi J, Kahn SE, Lavelle EC, O’Neill LA (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 11(10):897–904. doi: 10.1038/ni.1935, doi: ni.1935 [pii] PubMedCrossRefGoogle Scholar
  7. 7.
    Westwell-Roper C, Dai DL, Soukhatcheva G, Potter KJ, van Rooijen N, Ehses JA, Verchere CB (2011) IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction. J Immunol. doi: 10.4049/jimmunol.1002854 PubMedGoogle Scholar
  8. 8.
    Masters SL, O’Neill LA (2011) Disease-associated amyloid and misfolded protein aggregates activate the inflammasome. Trends Mol Med 17(5):276–282. doi: 10.1016/j.molmed.2011.01.005 PubMedCrossRefGoogle Scholar
  9. 9.
    Kahn SE, D’Alessio DA, Schwartz MW, Fujimoto WY, Ensinck JW, Taborsky GJ Jr, Porte D Jr (1990) Evidence of cosecretion of islet amyloid polypeptide and insulin by beta-cells. Diabetes 39(5):634–638PubMedCrossRefGoogle Scholar
  10. 10.
    Westermark P, Wernstedt C, Wilander E, Sletten K (1986) A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem Biophys Res Commun 140(3):827–831PubMedCrossRefGoogle Scholar
  11. 11.
    Westermark P (1972) Quantitative studies on amyloid in the islets of Langerhans. Ups J Med Sci 77(2):91–94PubMedGoogle Scholar
  12. 12.
    Bell ET (1959) Hyalinization of the islets of Langerhans in nondiabetic individuals. Am J Pathol 35(4):801–805PubMedGoogle Scholar
  13. 13.
    Zraika S, Hull RL, Verchere CB, Clark A, Potter KJ, Fraser PE, Raleigh DP, Kahn SE (2010) Toxic oligomers and islet beta cell death: guilty by association or convicted by circumstantial evidence? Diabetologia 53(6):1046–1056. doi: 10.1007/s00125-010-1671-6 PubMedCrossRefGoogle Scholar
  14. 14.
    Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300 (5618):486–489. doi: 10.1126/science.1079469300/5618/486 [pii] Google Scholar
  15. 15.
    Park K, Verchere CB (2001) Identification of a heparin binding domain in the N-terminal cleavage site of pro-islet amyloid polypeptide. Implications for islet amyloid formation. J Biol Chem 276(20):16611–16616. doi: 10.1074/jbc.M008423200 M008423200 [pii]Google Scholar
  16. 16.
    Kudva YC, Mueske C, Butler PC, Eberhardt NL (1998) A novel assay in vitro of human islet amyloid polypeptide amyloidogenesis and effects of insulin secretory vesicle peptides on amyloid formation. Biochem J 331(Pt 3):809–813PubMedGoogle Scholar

Copyright information

© Springer Science+business media, New York 2013

Authors and Affiliations

  • Clara Westwell-Roper
    • 1
  • Aisling Dunne
    • 2
  • Man Lyang Kim
    • 3
  • C. Bruce Verchere
    • 4
  • Seth L. Masters
    • 3
  1. 1.Department of Pathology and Laboratory Medicine, Child and Family Research InstituteUniversity of British ColumbiaVancouverCanada
  2. 2.Immunology Research Centre, School of Biochemistry and ImmunologyTrinity CollegeDublin 2Ireland
  3. 3.Inflammation DivisionThe Walter and Eliza Hall Institute of Medical ResearchMelbourneAustralia
  4. 4.Department of Pathology and Laboratory Medicine and the Department of Surgery, Child and Family Research InstituteUniversity of British ColumbiaVancouverCanada

Personalised recommendations