Reconstituting the NLRP1 Inflammasome In Vitro

  • Benjamin Faustin
  • John C. Reed
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1040)

Abstract

Nucleotide-binding domain leucine-rich-repeat containing receptors; NOD-Like Receptors (NLRs) were originally described as microbial sensors involved in host defense against pathogens that comprise an important component of the innate immune system. Recently, their cellular functions have expanded beyond classical pathogen detection, to danger sensors that may contribute to the pathophysiology of a wide range of inflammation-driven human illnesses such as metabolic diseases (atherosclerosis, obesity, type 2 diabetes, gout, age-related macular degeneration) and neurological disorders (Alzheimer’s disease). Pathogen-stimulated NLRs such as NLR family Pyrin domain-containing protein 1 (NLRP1) assemble into molecular platforms called “inflammasomes” to activate inflammatory protease caspase-1, which processes pro-IL-1β and pro-IL-18 into active cytokines. We describe methods for reconstituting the human NLRP1 inflammasome in vitro. Protocols are provided for: (a) expression and purification of inflammasome core components (NLRP1 and pro-caspase-1 proteins) using the baculovirus/insect cell expression system, and (b) functional monitoring of NLRP1-mediated caspase-1 activation in response to NLRP1 ligand muramyl dipeptide (MDP) and ATP.

Key words

Inflammasome NLRP1 Caspase-1 Recombinant proteins 

References

  1. 1.
    Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426PubMedCrossRefGoogle Scholar
  2. 2.
    Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458(7237):514–518. doi:nature07725 [pii], 10.1038/nature07725 PubMedCrossRefGoogle Scholar
  3. 3.
    Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832. doi:S0092-8674(10)00075-9 [pii], 10.1016/j.cell.2010.01.040 PubMedCrossRefGoogle Scholar
  4. 4.
    Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735. doi:10.1146/annurev-immunol-031210-101405 PubMedCrossRefGoogle Scholar
  5. 5.
    Saleh M (2011) The machinery of Nod-like receptors: refining the paths to immunity and cell death. Immunol Rev 243(1):235–246. doi:10.1111/j.1600-065X.2011.01045.x PubMedCrossRefGoogle Scholar
  6. 6.
    De Nardo D, Latz E (2011) NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol 32(8):373–379. doi:doi:S1471-4906(11)00082-2 [pii], 10.1016/j.it.2011.05.004 PubMedCrossRefGoogle Scholar
  7. 7.
    Doyle SL, Campbell M, Ozaki E, Salomon RG, Mori A, Kenna PF, Farrar GJ, Kiang AS, Humphries MM, Lavelle EC, O’Neill LA, Hollyfield JG, Humphries P (2012) NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nat Med 18:791–798. doi:10.1038/nm.2717, nm.2717 [pii]PubMedCrossRefGoogle Scholar
  8. 8.
    Salvesen GS (2002) Caspases and apoptosis. Essays Biochem 38:9–19PubMedGoogle Scholar
  9. 9.
    Nagata S (1997) Apoptosis by death factor. Cell 88(3):355–365. doi:S0092-8674(00)81874-7 [pii] PubMedCrossRefGoogle Scholar
  10. 10.
    Reed JC, Doctor K, Rojas A, Zapata JM, Stehlik C, Fiorentino L, Damiano J, Roth W, Matsuzawa S, Newman R, Takayama S, Marusawa H, Xu F, Salvesen G, Godzik A (2003) Comparative analysis of apoptosis and inflammation genes of mice and humans. Genome Res 13(6B):1376–1388PubMedCrossRefGoogle Scholar
  11. 11.
    Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G, Bennett DC, Fain PR, Spritz RA (2007) NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med 356(12):1216–1225PubMedCrossRefGoogle Scholar
  12. 12.
    D’Osualdo A, Weichenberger CX, Wagner RN, Godzik A, Wooley J, Reed JC (2011) CARD8 and NLRP1 undergo autoproteolytic processing through a ZU5-like domain. PLoS One 6(11):e27396. doi:10.1371/journal.pone.0027396, PONE-D-11-15100 [pii]PubMedCrossRefGoogle Scholar
  13. 13.
    Tschopp J, Martinon F, Burns K (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4(2):95–104PubMedCrossRefGoogle Scholar
  14. 14.
    Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B, Volkmann N, Hanein D, Rouiller I, Reed JC (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25(5):713–724PubMedCrossRefGoogle Scholar
  15. 15.
    Bruey JM, Bruey-Sedano N, Luciano F, Zhai D, Balpai R, Xu C, Kress CL, Bailly-Maitre B, Li X, Osterman A, Matsuzawa S, Terskikh AV, Faustin B, Reed JC (2007) Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 129(1):45–56PubMedCrossRefGoogle Scholar
  16. 16.
    Faustin B, Chen Y, Zhai D, Le Negrate G, Lartigue L, Satterthwait A, Reed JC (2009) Mechanism of Bcl-2 and Bcl-X(L) inhibition of NLRP1 inflammasome: loop domain-dependent suppression of ATP binding and oligomerization. Proc Natl Acad Sci U S A 106(10):3935–3940. doi:0809414106 [pii], 10.1073/pnas.0809414106 PubMedCrossRefGoogle Scholar
  17. 17.
    Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356(6372):768–774PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+business media, New York 2013

Authors and Affiliations

  • Benjamin Faustin
    • 1
  • John C. Reed
    • 1
  1. 1.Sandford-Burnham Institute for Medical ResearchLa JollaUSA

Personalised recommendations