Skip to main content

Electrophysiological and Behavioral Approaches to the Analysis of Synaptic Tagging and Capture

  • Protocol
  • First Online:
  • 786 Accesses

Part of the book series: Neuromethods ((NM,volume 81))

Abstract

Since its inception in 1997/1998, the synaptic tagging and capture hypothesis (STC) of protein synthesis-dependent synaptic plasticity has inspired a wide range of studies attempting to further our understanding of heterosynaptic plasticity and its relevance to learning and memory. In the last few years, some behavioral predictions of the STC hypothesis have been confirmed, successfully translating electrophysiology into behavior. In this chapter, we describe the principles and caveats behind experiments on STC. In electrophysiological experiments, the necessity for long stable recordings and the need for multiple convergent inputs together pose considerable technical challenges. We describe how to secure sustained recordings in acute hippocampal brain slices. We also outline how to exploit multiple input pathways to identify specific molecules that may be plasticity-related products involved in the tagging process or in the synaptic capture of long-term plasticity. In behavioral experiments, we describe novel protocols to explore whether weak encoding events that usually produce a short-lasting memory can be rescued by a closely timed but unrelated neuromodulatory experience. This phenomenon can be used to identify, within the STC framework, the mechanisms of action of memory-altering compounds. We also propose further protocols to reveal the mechanisms behind this form of neuromodulation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Frey U, Morris RGM (1997) Synaptic tagging and long-term potentiation. Nature 385:533–536

    Article  PubMed  CAS  Google Scholar 

  2. Frey U, Morris RGM (1998) Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci 21:181–188

    Article  PubMed  CAS  Google Scholar 

  3. Frey U, Morris RGM (1998) Weak before strong: dissociating synaptic tagging and plasticity-factor accounts of late-LTP. Neuropharmacology 37:545–552

    Article  PubMed  CAS  Google Scholar 

  4. Redondo RL, Morris RGM (2011) Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci 12:17–30

    Article  PubMed  CAS  Google Scholar 

  5. Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    Article  PubMed  CAS  Google Scholar 

  6. Moncada D, Viola H (2007) Induction of long-term memory by exposure to novelty requires protein synthesis: evidence for a behavioral tagging. J Neurosci 27:7476–7481

    Article  PubMed  CAS  Google Scholar 

  7. Wang SH, Redondo RL, Morris RG (2010) Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proc Natl Acad Sci U S A 107:19537–19542

    Article  PubMed  CAS  Google Scholar 

  8. Ballarini F, Moncada D, Martinez MC et al (2009) Behavioral tagging is a general mechanism of long-term memory formation. Proc Natl Acad Sci U S A 106:14599–14604

    Article  PubMed  CAS  Google Scholar 

  9. Creager R, Dunwiddie T, Lynch G (1980) Paired-pulse and frequency facilitation in the CA1 region of the in vitro rat hippocampus. J Physiol 299:409–424

    PubMed  CAS  Google Scholar 

  10. Sajikumar S, Navakkode S, Frey JU (2005) Protein synthesis-dependent long-term functional plasticity: methods and techniques. Curr Opin Neurobiol 15:607–613

    Article  PubMed  CAS  Google Scholar 

  11. Masino SA, Latini S, Bordoni F et al (2001) Changes in hippocampal adenosine efflux, ATP levels, and synaptic transmission induced by increased temperature. Synapse 41:58–64

    Article  PubMed  CAS  Google Scholar 

  12. Moser E, Mathiesen I, Andersen P (1993) Association between brain temperature and dentate field potentials in exploring and swimming rats. Science 259:1324–1326

    Article  PubMed  CAS  Google Scholar 

  13. Watson PL, Weiner JL, Carlen PL (1997) Effects of variations in hippocampal slice preparation protocol on the electrophysiological stability, epileptogenicity and graded hypoxia responses of CA1 neurons. Brain Res 775:134–143

    Article  PubMed  CAS  Google Scholar 

  14. Fonseca R, Nagerl UV, Bonhoeffer T (2006) Neuronal activity determines the protein synthesis dependence of long-term potentiation. Nat Neurosci 9:478–480

    Article  PubMed  CAS  Google Scholar 

  15. Redondo RL, Okuno H, Spooner PA et al (2010) Synaptic tagging and capture: differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation. J Neurosci 30:4981–4989

    Article  PubMed  CAS  Google Scholar 

  16. Vazdarjanova A, Ramirez-Amaya V, Insel N et al (2006) Spatial exploration induces ARC, a plasticity-related immediate-early gene, only in calcium/calmodulin-dependent protein kinase II-positive principal excitatory and inhibitory neurons of the rat forebrain. J Comp Neurol 498:317–329

    Article  PubMed  CAS  Google Scholar 

  17. Miyashita T, Kubik S, Haghighi N et al (2009) Rapid activation of plasticity-associated gene transcription in hippocampal neurons provides a mechanism for encoding of one-trial experience. J Neurosci 29:898–906

    Article  PubMed  CAS  Google Scholar 

  18. Bi AL, Wang Y, Li BQ et al (2010) Region-specific involvement of actin rearrangement-related synaptic structure alterations in conditioned taste aversion memory. Learn Mem 17:420–427

    Article  PubMed  CAS  Google Scholar 

  19. Morris RGM, Anderson E, Lynch GS et al (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319:774–776

    Article  PubMed  CAS  Google Scholar 

  20. Pitkanen RI, Korpi ER, Oja SS (1985) Cerebral cortex slices in sodium-free medium: depletion of synaptic vesicles. Brain Res 326:384–387

    Article  PubMed  CAS  Google Scholar 

  21. Cooke WJ, Robinson JD (1971) Factors influencing calcium movements in rat brain slices. Am J Physiol 221:218–225

    PubMed  CAS  Google Scholar 

  22. Snow RW, Taylor CP, Dudek FE (1983) Electrophysiological and optical changes in slices of rat hippocampus during spreading depression. J Neurophysiol 50:561–572

    PubMed  CAS  Google Scholar 

  23. Somjen GG, Aitken PG, Balestrino M et al (1990) Spreading depression-like depolarization and selective vulnerability of neurons. A brief review. Stroke 21:III179–III183

    PubMed  CAS  Google Scholar 

  24. Fonseca R, Nagerl UV, Morris RGM et al (2004) Competing for memory: hippocampal LTP under regimes of reduced protein synthesis. Neuron 44:1011–1020

    PubMed  CAS  Google Scholar 

  25. Reymann KG, Malisch R, Schulzeck K et al (1985) The duration of long-term potentiation in the CA1 region of the hippocampal slice preparation. Brain Res Bull 15:249–255

    Article  PubMed  CAS  Google Scholar 

  26. Croning MDR, Haddad GG (1998) Comparison of brain slice chamber designs for investigations of oxygen deprivation in vitro. J Neurosci Methods 81:103–111

    Article  PubMed  CAS  Google Scholar 

  27. Fiala JC, Kirov SA, Feinberg MD et al (2003) Timing of neuronal and glial ultrastructure disruption during brain slice preparation and recovery in vitro. J Comp Neurol 465:90–103

    Article  PubMed  Google Scholar 

  28. Schuchmann S, Meierkord H, Stenkamp K et al (2002) Synaptic and nonsynaptic ictogenesis occurs at different temperatures in submerged and interface rat brain slices. J Neurophysiol 87:2929–2935

    PubMed  CAS  Google Scholar 

  29. Reid KH, Edmonds HL Jr, Schurr A et al (1988) Pitfalls in the use of brain slices. Prog Neurobiol 31:1–18

    Article  PubMed  CAS  Google Scholar 

  30. Aitken PG, Breese GR, Dudek FF et al (1995) Preparative methods for brain slices: a discussion. J Neurosci Methods 59:139–149

    Article  PubMed  CAS  Google Scholar 

  31. Lipton P, Aitken PG, Dudek FE et al (1995) Making the best of brain slices; comparing preparative methods. J Neurosci Methods 59:151–156

    Article  PubMed  CAS  Google Scholar 

  32. Skrede KK, Westgaard RH (1971) The transverse hippocampal slice: a well-defined cortical structure maintained in vitro. Brain Res 35:589–593

    Article  PubMed  CAS  Google Scholar 

  33. Sajikumar S, Navakkode S, Frey JU (2008) Distinct single but not necessarily repeated tetanization is required to induce hippocampal late-LTP in the rat CA1. Learn Mem 15:46–49

    Article  PubMed  Google Scholar 

  34. Schurr A, Reid KH, Tseng MT et al (1986) Effect of electrical stimulation on the viability of the hippocampal slice preparation. Brain Res Bull 16:299–301

    Article  PubMed  CAS  Google Scholar 

  35. Navakkode S, Sajikumar S, Frey JU (2007) Synergistic requirements for the induction of dopaminergic D1/D5-receptor-mediated LTP in hippocampal slices of rat CA1 in vitro. Neuropharmacology 52:1547–1554

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Redondo, R., Morris, R.G.M. (2013). Electrophysiological and Behavioral Approaches to the Analysis of Synaptic Tagging and Capture. In: Nguyen, P. (eds) Multidisciplinary Tools for Investigating Synaptic Plasticity. Neuromethods, vol 81. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-517-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-517-0_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-516-3

  • Online ISBN: 978-1-62703-517-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics