Membrane Biogenesis pp 325-344

Part of the Methods in Molecular Biology book series (MIMB, volume 1033) | Cite as

Reconstitution of Mitochondrial Presequence Translocase into Proteoliposomes

  • Martin van der Laan
  • Ralf M. Zerbes
  • Chris van der Does
Protocol

Abstract

The isolation and functional reconstitution of large membrane protein complexes is an important step towards the biochemical characterization of such sophisticated molecular machines. Reconstitution is a multistep process that requires the mild solubilization of membrane protein complexes from native membrane preparations, the purification of the complexes from protein–detergent solutions, and their incorporation into artificial phospholipid vesicles through controlled detergent removal. The major challenge is to preserve the integrity and catalytic activity of the often fragile membrane protein assemblies during the entire procedure. Here we describe the protocols for a particularly intricate example, the functional reconstitution of the mitochondrial presequence translocase (TIM23 complex). This highly versatile and dynamic protein complex is the main protein translocation machinery of the inner mitochondrial membrane and mediates the import of precursor proteins with N-terminal presequences from the cytosol.

Key words

Digitonin Membrane protein complex Mitochondria Phospholipids Protein import Proteoliposomes Reconstitution TIM23 complex Translocation 

References

  1. 1.
    Krogh A, Larsson B, von Heijne G et al (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580PubMedCrossRefGoogle Scholar
  2. 2.
    Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964PubMedCrossRefGoogle Scholar
  3. 3.
    Andreoli TE (1974) Planar lipid bilayer membranes. Methods Enzymol 32:513–539PubMedCrossRefGoogle Scholar
  4. 4.
    Reeves JP, Dowben RM (1969) Formation and properties of thin-walled phospholipid vesicles. J Cell Physiol 73:49–60PubMedCrossRefGoogle Scholar
  5. 5.
    Darszon A, Vandenberg CA, Schonfeld M et al (1980) Reassembly of protein-lipid complexes into large bilayer vesicles: perspectives for membrane reconstitution. Proc Natl Acad Sci USA 77:239–243PubMedCrossRefGoogle Scholar
  6. 6.
    Tribet C, Audebert R, Popot JL (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047–15050PubMedCrossRefGoogle Scholar
  7. 7.
    Baneres JL, Popot JL, Mouillac B (2011) New advances in production and functional folding of G-protein-coupled receptors. Trends Biotechnol 29:314–322PubMedCrossRefGoogle Scholar
  8. 8.
    Heerklotz H, Tsamaloukas AD, Keller S (2009) Monitoring detergent-mediated solubilization and reconstitution of lipid membranes by isothermal titration calorimetry. Nat Protoc 4:686–697PubMedCrossRefGoogle Scholar
  9. 9.
    Le Maire M, Champeil P, Moller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111PubMedCrossRefGoogle Scholar
  10. 10.
    van der Laan M, Meinecke M, Dudek J et al (2007) Motor-free mitochondrial presequence translocase drives membrane integration of preproteins. Nat Cell Biol 9:1152–1159PubMedCrossRefGoogle Scholar
  11. 11.
    Neupert W, Herrmann JM (2007) Translocation of proteins into mitochondria. Annu Rev Biochem 76:723–749PubMedCrossRefGoogle Scholar
  12. 12.
    Chacinska A, Koehler CM, Milenkovic D et al (2009) Importing mitochondrial proteins: machineries and mechanisms. Cell 138:628–644PubMedCrossRefGoogle Scholar
  13. 13.
    Meisinger C, Pfanner N, Truscott KN (2006) Isolation of yeast mitochondria. Methods Mol Biol 313:33–39PubMedGoogle Scholar
  14. 14.
    Chacinska A, Lind M, Frazier AE et al (2005) Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell 120:817–829PubMedCrossRefGoogle Scholar
  15. 15.
    Knop M, Siegers K, Pereira G et al (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15:963–972PubMedCrossRefGoogle Scholar
  16. 16.
    Kusters R, Dowhan W, de Kruijff B (1991) Negatively charged phospholipids restore prePhoE translocation across phosphatidylglycerol-depleted Escherichia coli inner membranes. J Biol Chem 266:8659–8662PubMedGoogle Scholar
  17. 17.
    Ridder AN, Kuhn A, Killian JA et al (2001) Anionic lipids stimulate Sec-independent insertion of a membrane protein lacking charged amino acid side chains. EMBO Rep 2:403–408PubMedGoogle Scholar
  18. 18.
    Paternostre MT, Roux M, Rigaud JL (1988) Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by Triton X-100, octyl glucoside, and sodium cholate. Biochemistry 27:2668–2677PubMedCrossRefGoogle Scholar
  19. 19.
    Wittig I, Schägger H (2008) Features and applications of blue-native and clear-native electrophoresis. Proteomics 8:3974–3990PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Martin van der Laan
    • 1
  • Ralf M. Zerbes
    • 1
  • Chris van der Does
    • 2
  1. 1.Institut für Biochemie and Molekularbiologie, ZMBZUniversität FreiburgFreiburgGermany
  2. 2.Max Planck Institute for Terrestrial MicrobiologyMarburgGermany

Personalised recommendations