Scanning Fluorescence Correlation Spectroscopy in Model Membrane Systems

  • Joseph D. Unsay
  • Ana J. García-Sáez
Part of the Methods in Molecular Biology book series (MIMB, volume 1033)


Fluorescence correlation spectroscopy (FCS) is an emerging technique employed in biophysical studies that exploits the temporal autocorrelation of fluorescence intensity fluctuations measured in a tiny volume (in the order of fL). The autocorrelation curve derived from the fluctuations can then be fitted with diffusion models to obtain parameters such as diffusion time and number of particles in the diffusion volume/area. Application of FCS to membranes allows studying membrane component dynamics, which includes mobility and interactions between the components. However, FCS encounters several difficulties like accurate positioning and stability of the setup when applied to membranes.

Here, we describe the theoretical basis of point FCS as well as the scanning FCS (SFCS) approach, which is a practical way to address the challenges of FCS with membranes. We also list materials necessary for FCS experiments on two model membrane systems: (1) supported lipid bilayers and (2) giant unilamellar vesicles. Finally, we present simple protocols for the preparation of these model membrane systems, calibration of the microscope setup for FCS, and acquisition and analysis of point FCS and SFCS data so that diffusion coefficients and concentrations of fluorescent probes within lipid membranes can be calculated.

Key words

Fluorescence correlation spectroscopy Supported lipid bilayers Giant unilamellar vesicles Scanning fluorescence correlation spectroscopy Diffusion coefficient 


  1. 1.
    Kholodenko BN, Hancock JF, Kolch W (2010) Signalling ballet in space and time. Nat Rev Mol Cell Biol 11:414–426PubMedCrossRefGoogle Scholar
  2. 2.
    van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124PubMedCrossRefGoogle Scholar
  3. 3.
    Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79PubMedCrossRefGoogle Scholar
  4. 4.
    Ellis JA, Jackman MR, Luzio JP (1992) The post-synthetic sorting of endogenous membrane proteins examined by the simultaneous purification of apical and basolateral plasma membrane fractions from Caco-2 cells. Biochem J 283:553–560PubMedGoogle Scholar
  5. 5.
    Bünger S, Roblick UJ, Habermann JK (2010) Comparison of five commercial extraction kits for subsequent membrane protein profiling. Cytotechnology 61:153–159CrossRefGoogle Scholar
  6. 6.
    Von Jagow G, Schägger H (eds) (1994) A practical guide to membrane protein purification. Academic, San DiegoGoogle Scholar
  7. 7.
    Santoni V, Molloy M, Rabilloud T (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21:1054–1070PubMedCrossRefGoogle Scholar
  8. 8.
    Edwards A, Arrowsmith C, Christendat D et al (2000) Protein production: feeding the crystallographers and NMR spectroscopists. Nat Struct Biol 7:970–972PubMedCrossRefGoogle Scholar
  9. 9.
    Gräslund S, Nordlund P, Weigelt J et al (2008) Protein production and purification. Nat Methods 5:135–146PubMedCrossRefGoogle Scholar
  10. 10.
    Hühmer AFR, Aced GI, Perkins MD et al (1997) Separation and analysis of peptides and proteins. Anal Chem 69:29R–57RPubMedCrossRefGoogle Scholar
  11. 11.
    Yamamoto K, Soong R, Ramamoorthy A (2009) Comprehensive analysis of lipid dynamics variation with lipid composition and hydration of bicelles using nuclear magnetic resonance (NMR) spectroscopy. Langmuir 25:7010–7018PubMedCrossRefGoogle Scholar
  12. 12.
    Ricchelli F, Gobbo S, Moreno G et al (1999) Changes of the fluidity of mitochondrial membranes induced by the permeability transition. Biochemistry 38:9295–9300PubMedCrossRefGoogle Scholar
  13. 13.
    Muller DJ (2008) AFM: a nanotool in membrane biology. Biochemistry 47:7986–7998PubMedCrossRefGoogle Scholar
  14. 14.
    Goksu EI, Vanegas JM, Blanchette CD et al (2009) AFM for structure and dynamics of biomembranes. Biochim Biophys Acta 1788:254–266PubMedCrossRefGoogle Scholar
  15. 15.
    Cambi A, Lidke D (2012) Nanoscale membrane organization: where biochemistry meets advanced microscopy. ACS Chem Biol 7:139–149PubMedCrossRefGoogle Scholar
  16. 16.
    Baumgart T, Hammond AT, Sengupta P et al (2007) Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc Natl Acad Sci USA 104:3165–3170PubMedCrossRefGoogle Scholar
  17. 17.
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572PubMedCrossRefGoogle Scholar
  18. 18.
    Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14PubMedCrossRefGoogle Scholar
  19. 19.
    Schwille P (2001) Fluorescence correlation spectroscopy and its potential for intracellular applications. Cell Biochem Biophys 34:383–408PubMedCrossRefGoogle Scholar
  20. 20.
    Hess ST, Huang S, Heikal AA et al (2002) Biological and chemical applications of fluorescecnce correlation spectroscopy: a review. Biochemistry 41:697–705PubMedCrossRefGoogle Scholar
  21. 21.
    Garcia-Saez AJ, Buschhorn SB, Keller H et al (2011) Oligomerization and pore formation by equinatoxin II inhibit endocytosis and lead to plasma membrane reorganization. J Biol Chem 286:37768–37777PubMedCrossRefGoogle Scholar
  22. 22.
    Ries J, Schwille P (2008) New concepts for fluorescence correlation spectroscopy on membranes. Phys Chem Chem Phys 10:3487PubMedCrossRefGoogle Scholar
  23. 23.
    Malengo G, Andolfo A, Sidenius N et al (2008) Fluorescence correlation spectroscopy and photon counting histogram on membrane proteins: functional dynamics of the glycosylphosphatidylinositol-anchored urokinase plasminogen activator receptor. J Biomed Opt 13:031215PubMedCrossRefGoogle Scholar
  24. 24.
    Xu L, Pallikkuth S, Hou Z et al (2011) Dysferlin forms a dimer mediated by the C2 domains and the transmembrane domain in vitro and in living cells. PLoS One 6:e27884PubMedCrossRefGoogle Scholar
  25. 25.
    Chiantia S, Schwille P, Klymchenko AS et al (2011) Asymmetric GUVs prepared by MβCD-mediated lipid exchange: an FCS study. Biophys J 100:L1–L3PubMedCrossRefGoogle Scholar
  26. 26.
    Ganguly S, Chattopadhyay A (2010) Cholesterol depletion mimics the effect of cytoskeletal destabilization on membrane dynamics of the serotonin1a receptor: a zFCS study. Biophys J 99:1397–1407PubMedCrossRefGoogle Scholar
  27. 27.
    Guo L, Gai F (2010) Heterogeneous diffusion of a membrane-bound pHLIP peptide. Biophys J 98:2914–2922PubMedCrossRefGoogle Scholar
  28. 28.
    Rigler R, Mets Ü, Widengren J et al (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22:169–175CrossRefGoogle Scholar
  29. 29.
    Magde D, Elson E, Webb W (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708CrossRefGoogle Scholar
  30. 30.
    Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169PubMedCrossRefGoogle Scholar
  31. 31.
    Petrov EP, Schwille P (2008) State of the art and novel trends in fluorescence correlation spectroscopy. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements II, vol 6, Springer series on fluorescence. Springer, Berlin, pp 145–197CrossRefGoogle Scholar
  32. 32.
    Enderlein J, Gregor I, Patra D et al (2005) Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration. Chemphyschem 6:2324–2336PubMedCrossRefGoogle Scholar
  33. 33.
    Tcherniak A, Reznik C, Link S et al (2009) Fluorescence correlation spectroscopy: criteria for analysis in complex systems. Anal Chem 81:746–754PubMedCrossRefGoogle Scholar
  34. 34.
    García-Sáez AJ, Schwille P (2008) Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions. Methods 46:116–122PubMedCrossRefGoogle Scholar
  35. 35.
    Humpolíčková J, Gielen E, Benda A et al (2006) Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys J 91:L23–L25PubMedCrossRefGoogle Scholar
  36. 36.
    Ries J, Chiantia S, Schwille P (2009) Accurate determination of membrane dynamics with line-scan FCS. Biophys J 96:1999–2008PubMedCrossRefGoogle Scholar
  37. 37.
    Ries J, Schwille P (2006) Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 91:1915–1924PubMedCrossRefGoogle Scholar
  38. 38.
    Bacia K, Schwille P (2007) Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat Protoc 2:2842–2856PubMedCrossRefGoogle Scholar
  39. 39.
    Dertinger T, Loman A, Ewers B et al (2008) The optics and performance of dual-focus fluorescence correlation spectroscopy. Opt Express 16:14353–14368PubMedCrossRefGoogle Scholar
  40. 40.
    Ries J, Weidemann T, Schwille P (2012) Fluorescence correlation spectroscopy. In: Egelman E (ed) Comprehensive biophysics. Academic, San Diego, pp 210–245CrossRefGoogle Scholar
  41. 41.
    Chiantia S, Ries J, Kahya N et al (2006) Combined AFM and two-focus SFCS study of raft-exhibiting model membranes. Chemphyschem 7:2409–2418PubMedCrossRefGoogle Scholar
  42. 42.
    Egawa H, Furusawa K (1999) Liposome adhesion on mica surface studied by atomic force microscopy. Langmuir 15:1660–1666CrossRefGoogle Scholar
  43. 43.
    Cremer PS, Boxer SG (1999) Formation and spreading of lipid bilayers on planar glass supports. J Phys Chem B 103:2554–2559CrossRefGoogle Scholar
  44. 44.
    Tamm LK, McConnell HM (1985) Supported phospholipid bilayers. Biophys J 47:105–113PubMedCrossRefGoogle Scholar
  45. 45.
    Castellana ET, Cremer PS (2006) Solid supported lipid bilayers: from biophysical studies to sensor design. Surf Sci Rep 61:429–444CrossRefGoogle Scholar
  46. 46.
    Garcia-Saez AJ, Chiantia S, Schwille P (2007) Effect of line tension on the lateral organization of lipid membranes. J Biol Chem 282:33537–33544PubMedCrossRefGoogle Scholar
  47. 47.
    Przybylo M, Sykora J, Humpolickova J et al (2006) Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions. Langmuir 22:9096–9099PubMedCrossRefGoogle Scholar
  48. 48.
    Angelova MI, Dimitrov DS (1986) Liposome electroformation. Faraday Discuss 81:303CrossRefGoogle Scholar
  49. 49.
    Angelova MI, Dimitrov DS (1987) Swelling of charged lipids and formation of liposomes on electrode surfaces. Mol Cryst Liq Cryst Inc Nonlin 152:89–104Google Scholar
  50. 50.
    Dimitrov DS, Angelova MI (1988) Lipid swelling and liposome formation mediated by electric fields. Bioelectrochem Bioenerg 19:323–336CrossRefGoogle Scholar
  51. 51.
    Angelova MI, Soléau S, Méléard P et al (1992) Preparation of giant vesicles by external AC electric fields. Kinetics and applications. Progr Colloid Polym Sci 89:127–131CrossRefGoogle Scholar
  52. 52.
    Chiantia S, Ries J, Schwille P (2009) Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim Biophys Acta 1788:225–233PubMedCrossRefGoogle Scholar
  53. 53.
    Bacia K (2004) SNAREs prefer liquid-disordered over “raft” (liquid-ordered) domains when reconstituted into giant unilamellar vesicles. J Biol Chem 279:37951–37955PubMedCrossRefGoogle Scholar
  54. 54.
    Doeven MK, Folgering JHA, Krasnikov V et al (2005) Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. Biophys J 88:1134–1142PubMedCrossRefGoogle Scholar
  55. 55.
    García-Sáez AJ, Ries J, Orzáez M et al (2009) Membrane promotes tBID interaction with BCLXL. Nat Struct Mol Biol 16:1178–1185PubMedCrossRefGoogle Scholar
  56. 56.
    Kahya N (2002) Spatial organization of bacteriorhodopsin in model membranes. Light-induced mobility changes. J Biol Chem 277:39304–39311PubMedCrossRefGoogle Scholar
  57. 57.
    Steringer JP, Bleicken S, Andreas H et al (2012) Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-dependent oligomerization of fibroblast growth factor 2 (FGF2) triggers the formation of a lipidic membrane pore implicated in unconventional secretion. J Biol Chem 287:27659–27669PubMedCrossRefGoogle Scholar
  58. 58.
    Magatti D, Ferri F (2001) Fast multi-tau real-time software correlator for dynamic light scattering. Appl Optics 40:4011–4021CrossRefGoogle Scholar
  59. 59.
    Chiantia S, Kahya N, Schwille P (2007) Raft domain reorganization driven by short- and long-chain ceramide: a combined AFM and FCS study. Langmuir 23:7659–7665PubMedCrossRefGoogle Scholar
  60. 60.
    Dertinger T, Pacheco V, von der Hocht I et al (2007) Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. Chemphyschem 8:433–443PubMedCrossRefGoogle Scholar
  61. 61.
    Ries J, Ruckstuhl T, Verdes D et al (2008) Supercritical angle fluorescence correlation spectroscopy. Biophys J 94:221–229PubMedCrossRefGoogle Scholar
  62. 62.
    Marks KM, Nolan GP (2006) Chemical labeling strategies for cell biology. Nat Methods 3:591–596PubMedCrossRefGoogle Scholar
  63. 63.
    Prescher JA, Bertozzi CR (2005) Chemistry in living systems. Nat Chem Biol 1:13–21PubMedCrossRefGoogle Scholar
  64. 64.
    Politano TJ, Froude VE, Jing B et al (2010) AC-electric field dependent electroformation of giant lipid vesicles. Colloids Surf B Biointerfaces 79:75–82PubMedCrossRefGoogle Scholar
  65. 65.
    Petrášek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94:1437–1448PubMedCrossRefGoogle Scholar
  66. 66.
    Culbertson CT, Jacobson SC, Ramsey JM (2002) Diffusion coefficient measurements in microfluidic devices. Talanta 56:265–272CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Joseph D. Unsay
    • 1
  • Ana J. García-Sáez
    • 1
  1. 1.German Cancer Research CenterHeidelbergGermany

Personalised recommendations