Mouse Model of Invasive Fungal Infection

  • Donna M. MacCallum
Part of the Methods in Molecular Biology book series (MIMB, volume 1031)


The mouse intravenous (IV) challenge model of Candida albicans invasive fungal infection has been widely used to study the importance of the innate immune system in these infections. This chapter describes this well-characterized model, where fungal cells are administered directly into the mouse bloodstream to initiate a systemic infection. The preparation of tissue samples from infected mice to allow evaluation of disease progression and host responses is also described.

Key words

Intravenous Infection Candida albicans Virulence Organ-specific Immunity 



Research in the laboratory of DMM is supported by grants from the Wellcome Trust (089930), EC (STRIFE) and National Centre for the Replacement, Reduction and Refinement of Animals in Research (NC3Rs).


  1. 1.
    Kontoyiannis DP, Marr KA, Park BJ et al (2010) Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: overview of the transplant-associated infection surveillance network (TRANSNET) database. Clin Infect Dis 50:1091–1100PubMedCrossRefGoogle Scholar
  2. 2.
    Pappas PG, Alexander BD, Andes DR et al (2010) Invasive fungal infections among organ transplant recipients: results of the transplant-associated infection surveillance network (TRANSNET). Clin Infect Dis 50:1101–1111PubMedCrossRefGoogle Scholar
  3. 3.
    Holley A, Dulhunty J, Blot S, Lipman J, Lobo S, Dancer C, Rello J, Dimopoulos G (2009) Temporal trends, risk factors and outcomes in albicans and non-albicans candidaemia: an international epidemiological study in four multidisciplinary intensive care units. Int J Antimicrob Agents 33:554.e1–554.e7CrossRefGoogle Scholar
  4. 4.
    Horn DL, Neofytos D, Anaissie EJ, Fishman JA, Steinbach WJ, Olyaei AJ, Marr KA, Pfaller MA, Chang CH, Webster KM (2009) Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis 48:1695–1703PubMedCrossRefGoogle Scholar
  5. 5.
    MacCallum DM (2010) Candida infections and modelling disease. In: Ashbee HR, Bignell E (eds) Pathogenic yeasts, the yeast handbook. Springer, New York, pp 41–67CrossRefGoogle Scholar
  6. 6.
    Graf K, Khani SM, Ott E, Mattner F, Gastmeier P, Sohr D, Ziesing S, Chaberny IF (2011) Five-years surveillance of invasive aspergillosis in a university hospital. BMC Infect Dis 11:163PubMedCrossRefGoogle Scholar
  7. 7.
    Latge JP (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:310–350PubMedGoogle Scholar
  8. 8.
    Chamilos G, Luna M, Lewis RE, Bodey GP, Chemaly R, Tarrand JJ, Safdar A, Raad II, Kontoyiannis DP (2006) Invasive fungal infections in patients with hematologic malignancies in a tertiary care cancer center: an autopsy study over a 15-year period (1989–2003). Haematologica 91:986–989PubMedGoogle Scholar
  9. 9.
    Anane S, Khalfallah F (2007) Biological diagnosis of systemic candidiasis: difficulties and future prospects. Pathol Biol 55:262–272PubMedCrossRefGoogle Scholar
  10. 10.
    Cuenca-Estrella M, Bassetti M, Lass-Florl C, Racil Z, Richardson M, Rogers TR (2011) Detection and investigation of invasive mould disease. J Antimicrob Chemother 66(Suppl 1):i15–i24PubMedCrossRefGoogle Scholar
  11. 11.
    Morace G, Borghi E (2010) Fungal infections in ICU patients: epidemiology and the role of diagnostics. Minerva Anestesiol 76:950–956PubMedGoogle Scholar
  12. 12.
    MacCallum DM (2012) Mouse intravenous challenge models and applications. Meth Mol Biol 845:499–509CrossRefGoogle Scholar
  13. 13.
    Szabo EK, MacCallum DM (2011) The contribution of mouse models to our understanding of systemic candidiasis. FEMS Microbiol Lett 320:1–8PubMedCrossRefGoogle Scholar
  14. 14.
    MacCallum DM, Odds FC (2005) Temporal events in the intravenous challenge model for experimental Candida albicans infections in female mice. Mycoses 48:151–161PubMedCrossRefGoogle Scholar
  15. 15.
    Louria DB, Brayton RG, Finkel G (1963) Studies on the pathogenesis of experimental Candida albicans infections in mice. Sabouraudia 2:271–283CrossRefGoogle Scholar
  16. 16.
    Lionakis MS, Lim JK, Lee CC, Murphy PM (2011) Organ-specific innate immune responses in a mouse model of invasive candidiasis. J Innate Immun 3:180–199PubMedCrossRefGoogle Scholar
  17. 17.
    Spellberg B, Johnston D, Phan QT, Edwards JE Jr, French SW, Ibrahim AS, Filler SG (2003) Parenchymal organ, and not splenic, immunity correlates with host survival during disseminated candidiasis. Infect Immun 71:5756–5764PubMedCrossRefGoogle Scholar
  18. 18.
    MacCallum DM (2009) Massive induction of innate immune response to Candida albicans in the kidney in a murine intravenous challenge model. FEMS Yeast Res 9:1111–1122PubMedCrossRefGoogle Scholar
  19. 19.
    Spellberg B, Ibrahim AS, Edwards JE Jr, Filler SG (2005) Mice with disseminated candidiasis die of progressive sepsis. J Infect Dis 192:336–343PubMedCrossRefGoogle Scholar
  20. 20.
    MacCallum DM, Castillo L, Brown AJP, Gow NAR, Odds FC (2009) Early-expressed chemokines predict kidney immunopathology in experimental disseminated Candida albicans infections. PLoS One 4:e6420PubMedCrossRefGoogle Scholar
  21. 21.
    MacCallum DM, Castillo L, Nather K, Munro CA, Brown AJ, Gow NA, Odds FC (2009) Property differences among the four major Candida albicans strain clades. Eukaryot Cell 8:373–387PubMedCrossRefGoogle Scholar
  22. 22.
    Asmundsdottir LR, Erlendsdottir H, Agnarsson BA, Gottfredsson M (2009) The importance of strain variation in virulence of Candida dubliniensis and Candida albicans: results of a blinded histopathological study of invasive candidiasis. Clin Microbiol Infect 15:576–585PubMedCrossRefGoogle Scholar
  23. 23.
    Selmecki A, Bergmann S, Berman J (2005) Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains. Mol Microbiol 55:1553–1565PubMedCrossRefGoogle Scholar
  24. 24.
    Odds FC, Van Nuffel L, Gow NA (2000) Survival in experimental Candida albicans infections depends on inoculum growth conditions as well as animal host. Microbiology 146:1881–1889PubMedGoogle Scholar
  25. 25.
    Hector RF, Domer JE, Carrow EW (1982) Immune responses to Candida albicans in genetically distinct mice. Infect Immun 38:1020–1028PubMedGoogle Scholar
  26. 26.
    Marquis G, Montplaisir S, Pelletier M, Mousseau S, Auger P (1986) Strain-dependent differences in susceptibility of mice to experimental candidosis. J Infect Dis 154:906–909PubMedCrossRefGoogle Scholar
  27. 27.
    Ashman RB, Fulurija A, Papadimitriou JM (1996) Strain-dependent differences in host response to Candida albicans infection in mice are related to organ susceptibility and infectious load. Infect Immun 64:1866–1869PubMedGoogle Scholar
  28. 28.
    Murciano C, Yanez A, O’Connor JE, Gozalbo D, Gil ML (2008) Influence of aging on murine neutrophil and macrophage function against Candida albicans. FEMS Immunol Med Microbiol 53:214–221PubMedCrossRefGoogle Scholar
  29. 29.
    Ashman RB, Papadimitriou JM, Fulurija A (1999) Acute susceptibility of aged mice to infection with Candida albicans. J Med Microbiol 48:1095–1102PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Donna M. MacCallum
    • 1
  1. 1.Aberdeen Fungal Group, Institute of Medical SciencesUniversity of AberdeenAberdeenUK

Personalised recommendations