Immunogenicity of In Vitro Maintained and Matured Populations: Potential Barriers to Engraftment of Human Pluripotent Stem Cell Derivatives

  • Chad Tang
  • Irving L. Weissman
  • Micha Drukker
Part of the Methods in Molecular Biology book series (MIMB, volume 1029)


The potential to develop into any cell type makes human pluripotent stem cells (hPSCs) one of the most promising sources for regenerative treatments. Hurdles to their clinical applications include (1) formation of heterogeneously differentiated cultures, (2) the risk of teratoma formation from residual undifferentiated cells, and (3) immune rejection of engrafted cells. The recent production of human isogenic (genetically identical) induced PSCs (hiPSCs) has been proposed as a “solution” to the histocompatibility barrier. In theory, differentiated cells derived from patient-specific hiPSC lines should be histocompatible to their donor/recipient. However, propagation, maintenance, and non-physiologic differentiation of hPSCs in vitro may produce other, likely less powerful, immune responses. In light of recent progress towards the clinical application of hPSCs, this review focuses on two antigen presentation phenomena that may lead to rejection of isogenic hPSC derivates: namely, the expression of aberrant antigens as a result of long-term in vitro maintenance conditions or incomplete somatic cell reprogramming, and the unbalanced presentation of receptors and ligands involved in immune recognition due to accelerated differentiation. Finally, we discuss immunosuppressive approaches that could potentially address these immunological concerns.

Key words

Antigen presentation Immune surveillance Sialic acid Xenoantigen Episomal Non-integrating Teratomas 


  1. 1.
    Nankivell BJ, Alexander SI (2010) Rejection of the kidney allograft. N Engl J Med 363:1451–1462PubMedCrossRefGoogle Scholar
  2. 2.
    Drukker M, Katz G, Urbach A, Schuldiner M, Markel G et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 99:9864–9869PubMedCrossRefGoogle Scholar
  3. 3.
    Draper JS, Pigott C, Thomson JA, Andrews PW (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200:249–258PubMedCrossRefGoogle Scholar
  4. 4.
    Drukker M (2008) Immunological considerations for cell therapy using human embryonic stem cell derivatives.Google Scholar
  5. 5.
    Revazova ES, Turovets NA, Kochetkova OD, Kindarova LB, Kuzmichev LN et al (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9:432–449PubMedCrossRefGoogle Scholar
  6. 6.
    McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE et al (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405:1066–1069PubMedCrossRefGoogle Scholar
  7. 7.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  8. 8.
    Drukker M (2004) Immunogenicity of human embryonic stem cells: can we achieve tolerance? Springer Semin Immunopathol 26:201–213PubMedCrossRefGoogle Scholar
  9. 9.
    Drukker M, Benvenisty N (2004) The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol 22:136–141PubMedCrossRefGoogle Scholar
  10. 10.
    Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11:228–232PubMedCrossRefGoogle Scholar
  11. 11.
    Heiskanen A, Satomaa T, Tiitinen S, Laitinen A, Mannelin S et al (2007) N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells 25:197–202PubMedCrossRefGoogle Scholar
  12. 12.
    Chung TL, Turner JP, Thaker N, Kolle G, Cooper-White JJ et al (2010) Ascorbate promotes epigenetic activation of CD30 in human embryonic stem cells. Stem Cells 28(10):1782–1793PubMedCrossRefGoogle Scholar
  13. 13.
    Draper JS, Smith K, Gokhale P, Moore HD, Maltby E et al (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–54PubMedCrossRefGoogle Scholar
  14. 14.
    Spits C, Mateizel I, Geens M, Mertzanidou A, Staessen C et al (2008) Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol 26:1361–1363PubMedCrossRefGoogle Scholar
  15. 15.
    Kim K, Doi A, Wen B, Ng K, Zhao R et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290PubMedCrossRefGoogle Scholar
  16. 16.
    Fernandez N, Cooper J, Sprinks M, AbdElrahman M, Fiszer D et al (1999) A critical review of the role of the major histocompatibility complex in fertilization, preimplantation development and feto-maternal interactions. Hum Reprod Update 5: 234–248PubMedCrossRefGoogle Scholar
  17. 17.
    Lei T, Jacob S, Ajil-Zaraa I, Dubuisson JB, Irion O et al (2007) Xeno-free derivation and culture of human embryonic stem cells: current status, problems and challenges. Cell Res 17:682–688PubMedCrossRefGoogle Scholar
  18. 18.
    Tangvoranuntakul P, Gagneux P, Diaz S, Bardor M, Varki N et al (2003) Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc Natl Acad Sci U S A 100:12045–12050PubMedCrossRefGoogle Scholar
  19. 19.
    Chou HH, Takematsu H, Diaz S, Iber J, Nickerson E et al (1998) A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci U S A 95:11751–11756PubMedCrossRefGoogle Scholar
  20. 20.
    Cerdan C, Bendall SC, Wang L, Stewart M, Werbowetski T et al (2006) Complement targeting of nonhuman sialic acid does not mediate cell death of human embryonic stem cells. Nat Med 12:1113–1114, author reply 1115PubMedCrossRefGoogle Scholar
  21. 21.
    Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER et al (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24: 185–187PubMedCrossRefGoogle Scholar
  22. 22.
    Mallon BS, Park KY, Chen KG, Hamilton RS, McKay RD (2006) Toward xeno-free culture of human embryonic stem cells. Int J Biochem Cell Biol 38:1063–1075PubMedCrossRefGoogle Scholar
  23. 23.
    Xu C, Inokuma MS, Denham J, Golds K, Kundu P et al (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974PubMedCrossRefGoogle Scholar
  24. 24.
    Prowse AB, Doran MR, Cooper-White JJ, Chong F, Munro TP et al (2010) Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media. Biomaterials 31:8281–8288PubMedCrossRefGoogle Scholar
  25. 25.
    Rajala K, Hakala H, Panula S, Aivio S, Pihlajamaki H et al (2007) Testing of nine different xeno-free culture media for human embryonic stem cell cultures. Hum Reprod 22:1231–1238PubMedCrossRefGoogle Scholar
  26. 26.
    Newman AM, Cooper JB (2010) Lab-specific gene expression signatures in pluripotent stem cells. Cell Stem Cell 7:258–262PubMedCrossRefGoogle Scholar
  27. 27.
    Lefort N, Feyeux M, Bas C, Feraud O, Bennaceur-Griscelli A et al (2008) Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat Biotechnol 26:1364–1366PubMedCrossRefGoogle Scholar
  28. 28.
    Werbowetski-Ogilvie TE, Bosse M, Stewart M, Schnerch A, Ramos-Mejia V et al (2009) Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 27:91–97PubMedCrossRefGoogle Scholar
  29. 29.
    Herszfeld D, Wolvetang E, Langton-Bunker E, Chung TL, Filipczyk AA et al (2006) CD30 is a survival factor and a biomarker for transformed human pluripotent stem cells. Nat Biotechnol 24:351–357PubMedCrossRefGoogle Scholar
  30. 30.
    Al-Shamkhani A (2004) The role of CD30 in the pathogenesis of haematopoietic malignancies. Curr Opin Pharmacol 4:355–359PubMedCrossRefGoogle Scholar
  31. 31.
    Marchetto MC, Yeo GW, Kainohana O, Marsala M, Gage FH et al (2009) Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS One 4:e7076PubMedCrossRefGoogle Scholar
  32. 32.
    Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215PubMedCrossRefGoogle Scholar
  33. 33.
    Stelzer Y, Yanuka O, Benvenisty N (2011) Global analysis of parental imprinting in human parthenogenetic induced pluripotent stem cells. Nat Struct Mol Biol 18:735–741PubMedCrossRefGoogle Scholar
  34. 34.
    Guenther MG, Frampton GM, Soldner F, Hockemeyer D, Mitalipova M et al (2010) Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 7:249–257PubMedCrossRefGoogle Scholar
  35. 35.
    Hochedlinger K, Jaenisch R (2003) Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. N Engl J Med 349:275–286PubMedCrossRefGoogle Scholar
  36. 36.
    Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW et al (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 25:803–816PubMedCrossRefGoogle Scholar
  37. 37.
    Moore JC, Sadowy S, Alikani M, Toro-Ramos AJ, Swerdel MR et al (2010) A high-resolution molecular-based panel of assays for identification and characterization of human embryonic stem cell lines. Stem Cell Res 4:92–106PubMedCrossRefGoogle Scholar
  38. 38.
    Akopian V, Andrews PW, Beil S, Benvenisty N, Brehm J et al (2010) Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells. In Vitro Cell Dev Biol Anim 46:247–258PubMedCrossRefGoogle Scholar
  39. 39.
    Zeng F, Zhou Q, Tannenbaum S (2009) Consensus guidance for banking and supply of human embryonic stem cell lines for research purposes. Stem Cell Rev 5:301–314Google Scholar
  40. 40.
    Sprinks MT, Sellens MH, Dealtry GB, Fernandez N (1993) Preimplantation mouse embryos express Mhc class I genes before the first cleavage division. Immunogenetics 38: 35–40PubMedCrossRefGoogle Scholar
  41. 41.
    Cooper JC, Fernandez N, Joly E, Dealtry GB (1998) Regulation of major histocompatibility complex and TAP gene products in preimplantation mouse stage embryos. Am J Reprod Immunol 40:165–171PubMedCrossRefGoogle Scholar
  42. 42.
    Suarez-Alvarez B, Rodriguez RM, Calvanese V, Blanco-Gelaz MA, Suhr ST et al (2010) Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells. PLoS One 5:e10192PubMedCrossRefGoogle Scholar
  43. 43.
    Jurisicova A, Casper RF, MacLusky NJ, Mills GB, Librach CL (1996) HLA-G expression during preimplantation human embryo development. Proc Natl Acad Sci U S A 93: 161–165PubMedCrossRefGoogle Scholar
  44. 44.
    Drukker M, Katchman H, Katz G, Even-Tov Friedman S, Shezen E et al (2006) Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 24:221–229PubMedCrossRefGoogle Scholar
  45. 45.
    Mammolenti M, Gajavelli S, Tsoulfas P, Levy R (2004) Absence of major histocompatibility complex class I on neural stem cells does not permit natural killer cell killing and prevents recognition by alloreactive cytotoxic T lymphocytes in vitro. Stem Cells 22:1101–1110PubMedCrossRefGoogle Scholar
  46. 46.
    Wu DC, Boyd AS, Wood KJ (2008) Embryonic stem cells and their differentiated derivatives have a fragile immune privilege but still represent novel targets of immune attack. Stem Cells 26:1939–1950PubMedCrossRefGoogle Scholar
  47. 47.
    Boyd AS, Wood KJ (2009) Variation in MHC expression between undifferentiated mouse ES cells and ES cell-derived insulin-producing cell clusters. Transplantation 87:1300–1304PubMedCrossRefGoogle Scholar
  48. 48.
    Lampton PW, Crooker RJ, Newmark JA, Warner CM (2008) Expression of major histocompatibility complex class I proteins and their antigen processing chaperones in mouse embryonic stem cells from fertilized and parthenogenetic embryos. Tissue Antigens 72:448–457PubMedCrossRefGoogle Scholar
  49. 49.
    Utermohlen O, Baschuk N, Abdullah Z, Engelmann A, Siebolts U et al (2009) Immunologic hurdles of therapeutic stem cell transplantation. Biol Chem 390:977–983PubMedCrossRefGoogle Scholar
  50. 50.
    Dressel R, Guan K, Nolte J, Elsner L, Monecke S et al (2009) Multipotent adult germ-line stem cells, like other pluripotent stem cells, can be killed by cytotoxic T lymphocytes despite low expression of major histocompatibility complex class I molecules. Biol Direct 4:31PubMedCrossRefGoogle Scholar
  51. 51.
    Robertson NJ, Brook FA, Gardner RL, Cobbold SP, Waldmann H et al (2007) Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance. Proc Natl Acad Sci U S A 104:20920–20925PubMedCrossRefGoogle Scholar
  52. 52.
    Swijnenburg RJ, Schrepfer S, Govaert JA, Cao F, Ransohoff K et al (2008) Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci U S A 105:12991–12996PubMedCrossRefGoogle Scholar
  53. 53.
    Yen BL, Chang CJ, Liu KJ, Chen YC, Hu HI et al (2009) Brief report–human embryonic stem cell-derived mesenchymal progenitors possess strong immunosuppressive effects toward natural killer cells as well as T lymphocytes. Stem Cells 27:451–456PubMedCrossRefGoogle Scholar
  54. 54.
    Rideout WM III, Hochedlinger K, Kyba M, Daley GQ, Jaenisch R (2002) Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109:17–27PubMedCrossRefGoogle Scholar
  55. 55.
    Evans MJ, Gurer C, Loike JD, Wilmut I, Schnieke AE et al (1999) Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nat Genet 23:90–93PubMedCrossRefGoogle Scholar
  56. 56.
    Lanza RP, Chung HY, Yoo JJ, Wettstein PJ, Blackwell C et al (2002) Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol 20:689–696PubMedCrossRefGoogle Scholar
  57. 57.
    Lui KO, Boyd AS, Cobbold SP, Waldmann H, Fairchild PJ (2010) A role for regulatory T cells in acceptance of embryonic stem cell-derived tissues transplanted across an MHC barrier. Stem Cells 28(10):1905–1914PubMedCrossRefGoogle Scholar
  58. 58.
    Grinnemo KH, Genead R, Kumagai-Braesch M, Andersson A, Danielsson C et al (2008) Costimulation blockade induces tolerance to HESC transplanted to the testis and induces regulatory T-cells to HESC transplanted into the heart. Stem Cells 26:1850–1857PubMedCrossRefGoogle Scholar
  59. 59.
    Nitta T, Murata S, Ueno T, Tanaka K, Takahama Y (2008) Thymic microenvironments for T-cell repertoire formation. Adv Immunol 99:59–94PubMedCrossRefGoogle Scholar
  60. 60.
    Gardner JM, Fletcher AL, Anderson MS, Turley SJ (2009) AIRE in the thymus and beyond. Curr Opin Immunol 21:582–589PubMedCrossRefGoogle Scholar
  61. 61.
    Res P, Spits H (1999) Developmental stages in the human thymus. Semin Immunol 11:39–46PubMedCrossRefGoogle Scholar
  62. 62.
    Haynes BF, Heinly CS (1995) Early human T cell development: analysis of the human thymus at the time of initial entry of hematopoietic stem cells into the fetal thymic microenvironment. J Exp Med 181:1445–1458PubMedCrossRefGoogle Scholar
  63. 63.
    Nagano K, Yoshida Y, Isobe T (2008) Cell surface biomarkers of embryonic stem cells. Proteomics 8:4025–4035PubMedCrossRefGoogle Scholar
  64. 64.
    Kannagi R, Cochran NA, Ishigami F, Hakomori S, Andrews PW et al (1983) Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J 2:2355–2361PubMedGoogle Scholar
  65. 65.
    Shevinsky LH, Knowles BB, Damjanov I, Solter D (1982) Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell 30:697–705PubMedCrossRefGoogle Scholar
  66. 66.
    Tang C, Lee AS, Volkmer JP, Sahoo D, Nag D et al (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29(9):829–834PubMedCrossRefGoogle Scholar
  67. 67.
    Schopperle WM, DeWolf WC (2007) The TRA-1-60 and TRA-1-81 human pluripotent stem cell markers are expressed on podocalyxin in embryonal carcinoma. Stem Cells 25:723–730PubMedCrossRefGoogle Scholar
  68. 68.
    Brimble SN, Sherrer ES, Uhl EW, Wang E, Kelly S et al (2007) The cell surface glycosphingolipids SSEA-3 and SSEA-4 are not essential for human ESC pluripotency. Stem Cells 25:54–62PubMedCrossRefGoogle Scholar
  69. 69.
    Li Y, Zeng H, Xu RH, Liu B, Li Z (2009) Vaccination with human pluripotent stem cells generates a broad spectrum of immunological and clinical responses against colon cancer. Stem Cells 27:3103–3111PubMedGoogle Scholar
  70. 70.
    Siegel S, Wagner A, Kabelitz D, Marget M, Coggin J Jr et al (2003) Induction of cytotoxic T-cell responses against the oncofetal antigen-immature laminin receptor for the treatment of hematologic malignancies. Blood 102:4416–4423PubMedCrossRefGoogle Scholar
  71. 71.
    Zelle-Rieser C, Barsoum AL, Sallusto F, Ramoner R, Rohrer JW et al (2001) Expression and immunogenicity of oncofetal antigen-immature laminin receptor in human renal cell carcinoma. J Urol 165:1705–1709PubMedCrossRefGoogle Scholar
  72. 72.
    Tchabo NE, Mhawech-Fauceglia P, Caballero OL, Villella J, Beck AF et al (2009) Expression and serum immunoreactivity of developmentally restricted differentiation antigens in epithelial ovarian cancer. Cancer Immun 9:6PubMedGoogle Scholar
  73. 73.
    Dong W, Du J, Shen H, Gao D, Li Z et al (2010) Administration of embryonic stem cells generates effective antitumor immunity in mice with minor and heavy tumor load. Cancer Immunol Immunother 59:1697–1705PubMedCrossRefGoogle Scholar
  74. 74.
    Jonsson AH, Yokoyama WM (2009) Natural killer cell tolerance licensing and other mechanisms. Adv Immunol 101:27–79PubMedCrossRefGoogle Scholar
  75. 75.
    Yokoyama WM, Kim S (2006) How do natural killer cells find self to achieve tolerance? Immunity 24:249–257PubMedCrossRefGoogle Scholar
  76. 76.
    Orr MT, Lanier LL (2010) Natural killer cell education and tolerance. Cell 142:847–856PubMedCrossRefGoogle Scholar
  77. 77.
    Borrego F (2006) The first molecular basis of the “missing self” hypothesis. J Immunol 177:5759–5760PubMedGoogle Scholar
  78. 78.
    Frenzel LP, Abdullah Z, Kriegeskorte AK, Dieterich R, Lange N et al (2009) Role of natural-killer group 2 member D ligands and intercellular adhesion molecule 1 in natural killer cell-mediated lysis of murine embryonic stem cells and embryonic stem cell-derived cardiomyocytes. Stem Cells 27:307–316PubMedCrossRefGoogle Scholar
  79. 79.
    Preynat-Seauve O, de Rham C, Tirefort D, Ferrari-Lacraz S, Krause KH et al (2009) Neural progenitors derived from human embryonic stem cells are targeted by allogeneic T and natural killer cells. J Cell Mol Med 13:3556–3569PubMedCrossRefGoogle Scholar
  80. 80.
    Dressel R, Schindehutte J, Kuhlmann T, Elsner L, Novota P et al (2008) The tumorigenicity of mouse embryonic stem cells and in vitro differentiated neuronal cells is controlled by the recipients’ immune response. PLoS One 3:e2622PubMedCrossRefGoogle Scholar
  81. 81.
    Dressel R, Nolte J, Elsner L, Novota P, Guan K et al (2010) Pluripotent stem cells are highly susceptible targets for syngeneic, allogeneic, and xenogeneic natural killer cells. FASEB J 24(7):2164–2177PubMedCrossRefGoogle Scholar
  82. 82.
    Trowsdale J, Betz AG (2006) Mother’s little helpers: mechanisms of maternal–fetal tolerance. Nat Immunol 7:241–246PubMedCrossRefGoogle Scholar
  83. 83.
    Revazova ES, Turovets NA, Kochetkova OD, Agapova LS, Sebastian JL et al (2008) HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 10:11–24PubMedCrossRefGoogle Scholar
  84. 84.
    Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ et al (1990) A class I antigen, HLA-G, expressed in human trophoblasts. Science 248:220–223PubMedCrossRefGoogle Scholar
  85. 85.
    Magliocca JF, Held IK, Odorico JS (2006) Undifferentiated murine embryonic stem cells cannot induce portal tolerance but may possess immune privilege secondary to reduced major histocompatibility complex antigen expression. Stem Cells Dev 15:707–717PubMedCrossRefGoogle Scholar
  86. 86.
    Li L, Baroja ML, Majumdar A, Chadwick K, Rouleau A et al (2004) Human embryonic stem cells possess immune-privileged properties. Stem Cells 22:448–456PubMedCrossRefGoogle Scholar
  87. 87.
    Guller S, LaChapelle L (1999) The role of placental Fas ligand in maintaining immune privilege at maternal–fetal interfaces. Semin Reprod Endocrinol 17:39–44PubMedCrossRefGoogle Scholar
  88. 88.
    Yachimovich-Cohen N, Even-Ram S, Shufaro Y, Rachmilewitz J, Reubinoff B (2010) Human embryonic stem cells suppress T cell responses via arginase I-dependent mechanism. J Immunol 184:1300–1308PubMedCrossRefGoogle Scholar
  89. 89.
    Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5:641–654PubMedCrossRefGoogle Scholar
  90. 90.
    Ishikawa T, Harada T, Koi H, Kubota T, Azuma H et al (2007) Identification of arginase in human placental villi. Placenta 28:133–138PubMedCrossRefGoogle Scholar
  91. 91.
    Kropf P, Baud D, Marshall SE, Munder M, Mosley A et al (2007) Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur J Immunol 37:935–945PubMedCrossRefGoogle Scholar
  92. 92.
    Koch CA, Geraldes P, Platt JL (2008) Immunosuppression by embryonic stem cells. Stem Cells 26:89–98PubMedCrossRefGoogle Scholar
  93. 93.
    Trigona WL, Porter CM, Horvath-Arcidiacono JA, Majumdar AS, Bloom ET (2007) Could heme-oxygenase-1 have a role in modulating the recipient immune response to embryonic stem cells? Antioxid Redox Signal 9:751–756PubMedCrossRefGoogle Scholar
  94. 94.
    Fandrich F, Lin X, Chai GX, Schulze M, Ganten D et al (2002) Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning. Nat Med 8:171–178PubMedCrossRefGoogle Scholar
  95. 95.
    Fabricius D, Bonde S, Zavazava N (2005) Induction of stable mixed chimerism by embryonic stem cells requires functional Fas/FasL engagement. Transplantation 79: 1040–1044PubMedCrossRefGoogle Scholar
  96. 96.
    Bonde S, Zavazava N (2006) Immunogenicity and engraftment of mouse embryonic stem cells in allogeneic recipients. Stem Cells 24:2192–2201PubMedCrossRefGoogle Scholar
  97. 97.
    Hunt JS, Vassmer D, Ferguson TA, Miller L (1997) Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus. J Immunol 158: 4122–4128PubMedGoogle Scholar
  98. 98.
    Brunlid G, Pruszak J, Holmes B, Isacson O, Sonntag KC (2007) Immature and neurally differentiated mouse embryonic stem cells do not express a functional Fas/Fas ligand system. Stem Cells 25:2551–2558PubMedCrossRefGoogle Scholar
  99. 99.
    Lee AS, Tang C, Cao F, Xie X, van der Bogt K et al (2009) Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle 8:2608–2612PubMedCrossRefGoogle Scholar
  100. 100.
    Pearl JI, Lee AS, Leveson-Gower DB, Sun N, Ghosh Z et al (2011) Short-term immunosuppression promotes engraftment of embryonic and induced pluripotent stem cells. Cell Stem Cell 8:309–317PubMedCrossRefGoogle Scholar
  101. 101.
    Matzinger P, Kamala T (2011) Tissue-based class control: the other side of tolerance. Nat Rev Immunol 11:221–230PubMedCrossRefGoogle Scholar
  102. 102.
    Ferguson TA, Griffith TS (2006) A vision of cell death: Fas ligand and immune privilege 10 years later. Immunol Rev 213: 228–238PubMedCrossRefGoogle Scholar
  103. 103.
    Engelhardt B, Coisne C (2011) Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS 8:4PubMedCrossRefGoogle Scholar
  104. 104.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Chad Tang
    • 1
  • Irving L. Weissman
    • 1
  • Micha Drukker
    • 1
  1. 1.Institute of Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordUSA

Personalised recommendations