Using Chemical Kinetics to Model Biochemical Pathways

  • Nicolas Le Novère
  • Lukas Endler
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1021)

Abstract

Chemical kinetics is the study of the rate of reactions transforming some chemical entities into other chemical entities. Over the twentieth century it has become one of the cornerstones of biochemistry. When in the second half of the century basic knowledge of cellular processes became sufficient to understand quantitatively metabolic networks, chemical kinetics associated with systems theory led to the development of what would become an important branch of systems biology.

In this chapter we introduce basic concepts of chemical and enzyme kinetics, and show how the temporal evolution of a reaction system can be described by ordinary differential equations. Finally we present a method to apply this type of approach to model any regulatory network.

Key words

Chemical kinetics Chemical entities Quantitative Metabolic network Systems biology Enzyme kinetics Regulatory network 

References

  1. 1.
    Waage P, Guldberg C (1864) Studies concerning affinity. Forhandlinger: Videnskabs-Selskabet i Christiana 35Google Scholar
  2. 2.
    LeMasson G, Maex R (2001) Introduction to equation solving and parameter fitting. In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, London, pp 1–23Google Scholar
  3. 3.
    Hairer E, Nrsett SP, Wanner G (1993) Solving ordinary differential equations: nonstiff problems. Springer, BerlinGoogle Scholar
  4. 4.
    Hairer E, Wanner G (1996) Solving ordinary differential equation II: stiff and differential-algebraic problems. Springer, BerlinCrossRefGoogle Scholar
  5. 5.
    Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI–a COmplex PAthway SImulator. Bioinformatics 22(24):3067–3074PubMedCrossRefGoogle Scholar
  6. 6.
    Sauro H (2000) Jarnac: a system for interactive metabolic analysis. In: Hofmeyr JHS, Rohwer JM, Snoep JL (eds) Animating the cellular map 9th international bio-thermokinetics meeting, Ch. 33. Stellenbosch University Press, pp 221–228Google Scholar
  7. 7.
    Takahashi K, Ishikawa N, Sadamoto Y, Sasamoto H, Ohta S, Shiozawa A, Miyoshi F, Naito Y, Nakayama Y, Tomita M (2003) E-Cell 2: multi-platform E-Cell simulation system. Bioinformatics 19(13):1727–1729PubMedCrossRefGoogle Scholar
  8. 8.
    Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano H (2008) celldesigner 3.5: a versatile modeling tool for biochemical networks. In: Proceedings of the IEEE, vol 96, pp 1254–1265Google Scholar
  9. 9.
    Cornish-Bowden A (2004) Fundamentals of enzyme kinetics. Portland Press, LondonGoogle Scholar
  10. 10.
    Segel IH (ed) (1993) Enzyme kinetics. Wiley, New-YorkGoogle Scholar
  11. 11.
    Henri V (1902) Theorie generale de l’action de quelques diastases. Compt Rend Hebd Acad Sci Paris 135:916Google Scholar
  12. 12.
    Michaelis L, Menten M (1913) Die Kinetik der Invertinwirkung. Biochem Z 49:333–369Google Scholar
  13. 13.
    Briggs GE, Haldane JB (1925) A note on the kinetics of enzyme action. Biochem J 19(2):338–339PubMedGoogle Scholar
  14. 14.
    Kotyk A (1967) Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae. Biochim Biophys Acta 135(1):112–119PubMedCrossRefGoogle Scholar
  15. 15.
    Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40:1–7Google Scholar
  16. 16.
    Borghans JM, Dupont G, Goldbeter A (1997) Complex intracellular calcium oscillations. A theoretical exploration of possible mechanisms. Biophys Chem 66(1):25–41PubMedCrossRefGoogle Scholar
  17. 17.
    Parthimos D, Haddock RE, Hill CE, Griffith TM (2007) Dynamics of a three variable nonlinear model of vasomotion: comparison of theory and experiment. Biophys J 93(5):1534–1556PubMedCrossRefGoogle Scholar
  18. 18.
    Mestl T, Plahte E, Omholt SW (1995) A mathematical framework for describing and analysing gene regulatory networks. J Theor Biol 176:291–300PubMedCrossRefGoogle Scholar
  19. 19.
    Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent modification in biological-systems. Proc Natl Acad Sci USA 78:6840–6844PubMedCrossRefGoogle Scholar
  20. 20.
    Savageau MA, Voit EO (1987) Recasting nonlinear differential equations as systems: a canonical nonlinear form. Math Biosci 87:83–115CrossRefGoogle Scholar
  21. 21.
    Tyson J, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231PubMedCrossRefGoogle Scholar
  22. 22.
    Allen JP (ed) (2008) Biophysical chemistry. Wiley, OxfordGoogle Scholar
  23. 23.
    Fall C, Marland E, Wagner J, Tyson J (eds) (2002) Computational cell biology. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Nicolas Le Novère
    • 1
  • Lukas Endler
    • 2
  1. 1.Babraham InstituteCambridgeUK
  2. 2.EMBL Outstation–European Bioinformatics InstituteCambridgeUK

Personalised recommendations