Atomic Force Microscopy Assays for Evaluating Polyglutamine Aggregation in Solution and on Surfaces

  • Kathleen A. Burke
  • Justin Legleiter
Part of the Methods in Molecular Biology book series (MIMB, volume 1017)


Mutations which cause an expansion of CAG triplet repeats encoding polyglutamine (polyQ) are responsible for the subsequent misfolding of specific proteins that contribute directly to the pathogenesis of at least nine neurodegenerative disorders, including Huntington’s disease (HD) and the spinocerebellar ataxias (SCAs). Expansion of polyQ tracts results in the aggregation of these proteins, potentially through a variety of precursor aggregates, into fibrillar structures. There may also be a variety of aggregates formed that are off-pathway to the formation of fibrils. Here, detailed protocols for analyzing the aggregation of mutant huntingtin (htt) fragments (associated with HD) and synthetic polyQ peptides with atomic force microscopy (AFM) are described. Ex situ AFM can be used to characterize htt aggregate formation and morphology. In situ AFM allows for tracking the formation and fate of individual polyQ peptide aggregates on surfaces. The interaction of htt with a variety of surfaces, including lipid bilayers, can also be investigated. Furthermore, the mechanical impact of htt on lipid surfaces can be studied using specialized AFM techniques. Methods to analyze AFM images of htt aggregates are also presented.

Key words

Atomic force microscopy Polyglutamine Huntington’s disease Oligomers Fibrils 



Work in the author’s laboratory is supported by the Brodie Entrepreneurial and Development Fund, the National Science Foundation (NSF#1054211), and the Alzheimer’s Association.


  1. 1.
    Shao J, Diamond MI (2007) Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum Mol Genet 16(R2):R115–R123. doi: 10.1093/hmg/ddm213 PubMedCrossRefGoogle Scholar
  2. 2.
    Spada ARL, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352(6330):77–79PubMedCrossRefGoogle Scholar
  3. 3.
    Blackley HK, Patel N, Davies MC, Roberts CJ, Tendler SJ, Wilkinson MJ, Williams PM (1999) Morphological development of Aβ(1–40) amyloid fibrils. Exp Neurol 158(2):437–443PubMedCrossRefGoogle Scholar
  4. 4.
    Blackley HKL, Sanders GHW, Davies MC, Roberts CJ, Tendler SJB, Wilkinson MJ (2000) In-situ atomic force microscopy study of β-amyloid fibrillization. J Mol Biol 298:833–840PubMedCrossRefGoogle Scholar
  5. 5.
    Kowalewski T, Holtzman DM (1999) In situ atomic force microscopy study of Alzheimer’s β-amyloid peptide on different substrates: new insights into mechanism of beta-sheet formation. Proc Natl Acad Sci USA 96(7):3688–3693PubMedCrossRefGoogle Scholar
  6. 6.
    Nucifora LG, Burke KA, Feng X, Arbez N, Zhu S, Miller J, Yang G, Ratovitski T, Delannoy M, Muchowski PJ, Finkbeiner S, Legleiter J, Ross CA, Poirier MA (2012) Identification of novel potentially toxic oligomers formed in vitro from mammalian-derived expanded huntingtin exon-1 protein. J Biol Chem 287(19):16017–16028PubMedCrossRefGoogle Scholar
  7. 7.
    Poirier MA, Li H, Macosko J, Cai S, Amzel M, Ross CA (2002) Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrillization. J Biol Chem 277(43):41032–41037. doi: 10.1074/jbc.M205809200 PubMedCrossRefGoogle Scholar
  8. 8.
    Wacker JL, Zareie MH, Fong H, Sarikaya M, Muchowski PJ (2004) Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. Nat Struct Mol Biol 11:1215–1222PubMedCrossRefGoogle Scholar
  9. 9.
    Bhattacharyya A, Thakur AK, Chellgren VM, Thiagarajan G, Williams AD, Chellgren BW, Creamer TP, Wetzel R (2006) Oligoproline effects on polyglutamine conformation and aggregation. J Mol Biol 355(3):524–535PubMedCrossRefGoogle Scholar
  10. 10.
    Bhattacharyya AM, Ashwani KT, Ronald W (2005) Polyglutamine aggregation nucleation: thermodynamics of a highly unfavorable protein folding reaction. Proc Natl Acad Sci USA 102(43):15400–15405PubMedCrossRefGoogle Scholar
  11. 11.
    Chen S, Berthelier V, Hamilton JB, O’Nuallain B, Wetzel R (2002) Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41:7391–7399PubMedCrossRefGoogle Scholar
  12. 12.
    Chen S, Berthelier V, Yang W, Wetzel R (2001) Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J Mol Biol 311(1):173–182PubMedCrossRefGoogle Scholar
  13. 13.
    Chen S, Wetzel R (2001) Solubilization and disaggregation of polyglutamine peptides. Protein Sci 10:887–891PubMedCrossRefGoogle Scholar
  14. 14.
    Thakur AK, Jayaraman M, Mishra R, Thakur M, Chellgren VM, Byeon I-J, Anjum DH, Kodali R, Creamer TP, Conway JF, Gronenborn AM, Wetzel R (2009) Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol 16(4):380–389PubMedCrossRefGoogle Scholar
  15. 15.
    Yang W, Dunlap JR, Andrews RB, Wetzel R (2002) Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum Mol Genet 11(23):2905–2917PubMedCrossRefGoogle Scholar
  16. 16.
    O’Nuallain B, Thakur AK, Williams AD, Bhattacharyya AM, Chen S, Thiagarajan G, Wetzel R (2006) Kinetics and thermodynamics of amyloid assembly using a high-performance liquid chromatography-based sedimentation assay. In: Indu K, Ronald W (eds) Methods in enzymology, vol 413. Academic, New York, pp 34–74. doi: 10.1016/s0076-6879(06)13003-7 Google Scholar
  17. 17.
    Legleiter J, Lotz GP, Miller J, Ko J, Ng C, Williams GL, Finkbeiner S, Patterson PH, Muchowski PJ (2009) Monoclonal antibodies recognize distinct conformational epitopes formed by polyglutamine in a mutant huntingtin fragment. J Biol Chem 284(32):21647–21658PubMedCrossRefGoogle Scholar
  18. 18.
    Legleiter J, Fryer JD, Holtzman DM, Kowalewski T (2011) The modulating effect of mechanical changes in lipid bilayers caused by ApoE-containing lipoproteins on a beta induced membrane disruption. ACS Chem Neurosci 2(10):588–599. doi: 10.1021/cn2000475 PubMedCrossRefGoogle Scholar
  19. 19.
    Pifer PM, Yates EA, Legleiter J (2011) Point mutations in a beta result in the formation of distinct polymorphic aggregates in the presence of lipid bilayers. PLoS One 6(1):e16248. doi: 10.1371/journal.pone.0016248 PubMedCrossRefGoogle Scholar
  20. 20.
    Yip CM, Elton EA, Darabie AA, Morrison MR, McLaurin J (2001) Cholesterol, a modulator of membrane-associated Aβ-fibrillogenesis and neurotoxicity. J Mol Biol 311(4):723–734PubMedCrossRefGoogle Scholar
  21. 21.
    Yip CM, McLaurin J (2001) Amyloid-β peptide assembly: a critical step in fibrillogenesis and membrane disruption. Biophys J 80:1359–1371PubMedCrossRefGoogle Scholar
  22. 22.
    Kumar B, Pifer PM, Giovengo A, Legleiter J (2010) The effect of set point ratio and surface Young’s modulus on maximum tapping forces in fluid tapping mode atomic force microscopy. J Appl Phys 107:044508CrossRefGoogle Scholar
  23. 23.
    Legleiter J (2009) The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment. Nanotechnology 20(24):245703PubMedCrossRefGoogle Scholar
  24. 24.
    Legleiter J, Park M, Cusick B, Kowalewski T (2006) Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. Proc Natl Acad Sci USA 103(13):4813–4818PubMedCrossRefGoogle Scholar
  25. 25.
    Sahin O (2007) Harnessing bifurcations in tapping-mode atomic force microscopy to calibrate time-varying tip-sample force measurements. Rev Sci Instrum 78(10)Google Scholar
  26. 26.
    Sahin O (2008) Accessing time-varying forces on the vibrating tip of the dynamic atomic force microscope to map material composition. Isr J Chem 48(2):55–63CrossRefGoogle Scholar
  27. 27.
    Sahin O (2008) Time-varying tip-sample force measurements and steady-state dynamics in tapping-mode atomic force microscopy. Phys Rev B 77(11)Google Scholar
  28. 28.
    Sahin O, Erina N (2008) High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy. Nanotechnology 19(44)Google Scholar
  29. 29.
    Sahin O, Magonov S, Su C, Quate CF, Solgaard O (2007) An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat Nanotechnol 2(8):507–514PubMedCrossRefGoogle Scholar
  30. 30.
    Hillenbrand R, Stark M, Guckenberger R (2000) Higher-harmonics generation in tapping-mode atomic-force microscopy: insights into the tip-sample interaction. Appl Phys Lett 76:3478–3480CrossRefGoogle Scholar
  31. 31.
    Stark M, Stark RW, Heckl WM, Guckenberger R (2002) Inverting dynamic force microscopy: from signals to time-resolved interaction forces. Proc Natl Acad Sci USA 99:8473–8478PubMedCrossRefGoogle Scholar
  32. 32.
    Stark RW, Heckl WM (2003) Higher harmonics imaging in tapping-mode atomic-force microscopy. Rev Sci Instrum 74:5111–5114CrossRefGoogle Scholar
  33. 33.
    Legleiter J, Demattos R, Holtzman D, Kowalewski T (2004) In situ AFM studies of astrocyte-secreted apolipoprotein E and J-containing lipoproteins. J Colloid Interface Sci 278:96–106PubMedCrossRefGoogle Scholar
  34. 34.
    Tian F, Qian X, Villarrubia JS (2008) Blind estimation of general tip shape in AFM imaging. Ultramicroscopy 109(1):44–53. doi: 10.1016/j.ultramic.2008.08.002 PubMedCrossRefGoogle Scholar
  35. 35.
    Burke KA, Godbey J, Legleiter J (2011) Assessing mutant huntingtin fragment and polyglutamine aggregation by atomic force microscopy. Methods 53(3):275–284. doi: 10.1016/j.ymeth.2010.12.028 PubMedCrossRefGoogle Scholar
  36. 36.
    Legleiter J, Mitchell E, Lotz GP, Sapp E, Ng C, DiFiglia M, Thompson LM, Muchowski PJ (2010) Mutant Huntingtin fragments form oligomers in a polyglutamine length-dependent manner in vitro and in vivo. J Biol Chem 285(19):14777–14790. doi: 10.1074/jbc.M109.093708 PubMedCrossRefGoogle Scholar
  37. 37.
    Dahlgren PR, Karymov MA, Bankston J, Holden T, Thumfort P, Ingram VM, Lyubchenko YL (2005) Atomic force microscopy analysis of the Huntington protein nanofibril formation. Nanomedicine 1(1):52–57. doi: 10.1016/j.nano.2004.11.004 PubMedCrossRefGoogle Scholar
  38. 38.
    Hands S, Sajjad MU, Newton MJ, Wyttenbach A (2011) In vitro and in vivo aggregation of a fragment of huntingtin protein directly causes free radical production. J Biol Chem 286(52):44512–44520. doi: 10.1074/jbc.M111.307587 PubMedCrossRefGoogle Scholar
  39. 39.
    Masino L, Nicastro G, De Simone A, Calder L, Molloy J, Pastore A (2011) The Josephin domain determines the morphological and mechanical properties of ataxin-3 fibrils. Biophys J 100(8):2033–2042. doi: 10.1016/j.bpj.2011.02.056 PubMedCrossRefGoogle Scholar
  40. 40.
    Natalello A, Frana AM, Relini A, Apicella A, Invernizzi G, Casari C, Gliozzi A, Doglia SM, Tortora P, Regonesi ME (2011) A major role for side-chain polyglutamine hydrogen bonding in irreversible ataxin-3 aggregation. PLoS One 6(4):e18789. doi: 10.1371/journal.pone.0018789 PubMedCrossRefGoogle Scholar
  41. 41.
    Jochum T, Ritz ME, Schuster C, Funderburk SF, Jehle K, Schmitz K, Brinkmann F, Hirtz M, Moss D, Cato ACB (2012) Toxic and non-toxic aggregates from the SBMA and normal forms of androgen receptor have distinct oligomeric structures. Biochim Biophys Acta 1822(6):1070–1078. doi: 10.1016/j.bbadis.2012.02.006 PubMedCrossRefGoogle Scholar
  42. 42.
    Li M, Chevalier-Larsen ES, Merry DE, Diamond MI (2007) Soluble androgen receptor oligomers underlie pathology in a mouse model of spinobulbar muscular atrophy. J Biol Chem 282(5):3157–3164. doi: 10.1074/jbc.M609972200 PubMedCrossRefGoogle Scholar
  43. 43.
    Chen S, Frank AF, Ronald W (2002) Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc Natl Acad Sci USA 99(18):11884–11889PubMedCrossRefGoogle Scholar
  44. 44.
    Singh VR, Lapidus LJ (2008) The intrinsic stiffness of polyglutamine peptides. J Phys Chem B 112(42):13172–13176PubMedCrossRefGoogle Scholar
  45. 45.
    Thakur AK, Ronald W (2002) Mutational analysis of the structural organization of polyglutamine aggregates. Proc Natl Acad Sci USA 99(26):17014–17019PubMedCrossRefGoogle Scholar
  46. 46.
    Williamson TE, Vitalis A, Crick SL, Pappu RV (2010) Modulation of polyglutamine conformations and dimer formation by the N-terminus of huntingtin. J Mol Biol 396(5):1295–1309. doi: 10.1016/j.jmb.2009.12.017 PubMedCrossRefGoogle Scholar
  47. 47.
    Walters RH, Murphy RM (2009) Examining polyglutamine peptide length: a connection between collapsed conformations and increased aggregation. J Mol Biol 393(4):978–992PubMedCrossRefGoogle Scholar
  48. 48.
    Hwang W, Kim B-H, Dandu R, Cappello J, Ghandehari H, Seog J (2009) Surface induced nanofiber growth by self-assembly of a silk-elastin-like protein polymer. Langmuir 25(21):12682–12686. doi: 10.1021/la9015993 PubMedCrossRefGoogle Scholar
  49. 49.
    Kowalewski T, Legleiter J (2006) Imaging stability and average tip-sample force in tapping mode atomic force microscopy. J Appl Phys 99:064903CrossRefGoogle Scholar
  50. 50.
    Kuhle A, Sorensen AH, Bohr J (1997) Role of attractive forces in tapping tip force microscopy. J Appl Phys 81(10):6562–6569CrossRefGoogle Scholar
  51. 51.
    Salapaka MV, Chen DJ, Cleveland JP (2000) Linearity of amplitude and phase in tapping-mode atomic force microscopy. Phys Rev B 61(2):1106CrossRefGoogle Scholar
  52. 52.
    Song YX, Bhushan B (2008) Atomic force microscopy dynamic modes: modeling and applications. J Phys Condens Matter 20(22)Google Scholar
  53. 53.
    Burnham NA, Behrend OP, Oulevey F, Gremaud G, Gallo P-J, Gourdon D, Dupas E, Kulik AJ, Pollock HM, Briggs GAD (1997) How does a tip tap? Nanotechnology 8(2):67–75CrossRefGoogle Scholar
  54. 54.
    Kumar B, Pifer PM, Giovengo A, Legleiter J (2010) The effect of set point ratio and surface Young’s modulus on maximum tapping forces in fluid tapping mode atomic force microscopy. J Appl Phys 107(4):044508. doi: 10.1063/1.3309330 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2013

Authors and Affiliations

  • Kathleen A. Burke
    • 1
  • Justin Legleiter
    • 1
    • 2
  1. 1.The C. Eugene Bennett Department of ChemistryWest Virginia UniversityMorgantownUSA
  2. 2.WVnano Initiative and the Center for NeurosciencesWest Virginia UniversityMorgantownUSA

Personalised recommendations