The Myc Gene pp 213-219 | Cite as

Studying Myc’s Role in Metabolism Regulation

  • Anne Le
  • Chi V. Dang
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1012)

Abstract

The MYC oncogene encodes a master transcription factor, Myc, which regulates genes involved in ribosome biogenesis, lipid synthesis, nucleic acid synthesis, intermediary metabolism, and cell growth and proliferation. The genomics of Myc target genes has been well-established through global mapping of Myc binding sites in a variety of different cancer cell lines. These studies highlight the importance of Myc in regulating glucose and glutamine metabolism as well as mitochondrial and ribosomal biogenesis. These genomic studies, however, only become relevant with the companion metabolic studies using a variety of methods to measure oxygen consumption, glucose uptake, or metabolic pathways based on 13C-labeled glucose or glutamine uptake. These methods are described herein.

Key words

MYC Cancer metabolism Oxygen consumption Glucose uptake Stable isotope resolved metabolomics (SIRM) 13C-labeled glucose or glutamine 

References

  1. 1.
    Dang CV (2012) MYC on the path to cancer. Cell 149:22–35PubMedCrossRefGoogle Scholar
  2. 2.
    Eilers M, Eisenman RN (2008) Myc’s broad reach. Genes Dev 22:2755–2766PubMedCrossRefGoogle Scholar
  3. 3.
    Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16:253–264PubMedCrossRefGoogle Scholar
  4. 4.
    Johnston LA, Prober DA, Edgar BA, Eisenman RN, Gallant P (1999) Drosophila myc regulates cellular growth during development. Cell 98:779–790PubMedCrossRefGoogle Scholar
  5. 5.
    van Riggelen J, Yetil A, Felsher DW (2010) MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 10:301–309PubMedCrossRefGoogle Scholar
  6. 6.
    Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT, Ooi HS, Orlov YL, Shahab A, Yong HC, Fu Y, Weng Z, Kuznetsov VA, Sung WK, Ruan Y, Dang CV, Wei CL (2006) Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci USA 103:17834–17839PubMedCrossRefGoogle Scholar
  7. 7.
    Liu YC, Li F, Handler J, Huang CR, Xiang Y, Neretti N, Sedivy JM, Zeller KI, Dang CV (2008) Global regulation of nucleotide biosynthetic genes by c-Myc. PLoS One 3:e2722PubMedCrossRefGoogle Scholar
  8. 8.
    Okuyama H, Endo H, Akashika T, Kato K, Inoue M (2010) Downregulation of c-MYC protein levels contributes to cancer cell survival under dual deficiency of oxygen and glucose. Cancer Res 70:10213–10223PubMedCrossRefGoogle Scholar
  9. 9.
    Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J, Green DR (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35(6):871–882.Google Scholar
  10. 10.
    Dang CV, Kim JW, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8:51–56PubMedCrossRefGoogle Scholar
  11. 11.
    Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA 94:6658–6663PubMedCrossRefGoogle Scholar
  12. 12.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedCrossRefGoogle Scholar
  13. 13.
    Dang CV (2012) Links between metabolism and cancer. Genes Dev 26:877–890PubMedCrossRefGoogle Scholar
  14. 14.
    Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337PubMedCrossRefGoogle Scholar
  15. 15.
    Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–765PubMedCrossRefGoogle Scholar
  16. 16.
    Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, O’Donnell KA, Kim JW, Yustein JT, Lee LA, Dang CV (2005) Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol 25:6225–6234PubMedCrossRefGoogle Scholar
  17. 17.
    DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104:19345–19350PubMedCrossRefGoogle Scholar
  18. 18.
    Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, Zimmerman LJ, Liebler DC, Slebos RJ, Lorkiewicz PK, Higashi RM, Fan TW, Dang CV (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15:110–121PubMedCrossRefGoogle Scholar
  19. 19.
    Kim S, Li Q, Dang CV, Lee LA (2000) Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc Natl Acad Sci USA 97:11198–11202PubMedCrossRefGoogle Scholar
  20. 20.
    Shim H, Chun YS, Lewis BC, Dang CV (1998) A unique glucose-dependent apoptotic pathway induced by c-Myc. Proc Natl Acad Sci USA 95:1511–1516PubMedCrossRefGoogle Scholar
  21. 21.
    Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y (2007) Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 178:93–105PubMedCrossRefGoogle Scholar
  22. 22.
    Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL, Dang CV (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107:2037–2042PubMedCrossRefGoogle Scholar
  23. 23.
    Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio AL, Dias SM, Dang CV, Cerione RA (2010) Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18:207–219PubMedCrossRefGoogle Scholar
  24. 24.
    Gerriets VA, Rathmell JC (2012) Metabolic pathways in T cell fate and function. Trends Immunol 33:168–173PubMedCrossRefGoogle Scholar
  25. 25.
    Yang MY, Yang WC, Lin PM, Hsu JF, Hsiao HH, Liu YC, Tsai HJ, Chang CS, Lin SF (2011) Altered expression of circadian clock genes in human chronic myeloid leukemia. J Biol Rhythms 26:136–148PubMedCrossRefGoogle Scholar
  26. 26.
    Kim JW, Gao P, Liu YC, Semenza GL, Dang CV (2007) Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol 27:7381–7393PubMedCrossRefGoogle Scholar
  27. 27.
    Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW, Phang JM (2012) Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci USA 109:8983–8988PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Anne Le
    • 1
  • Chi V. Dang
    • 2
  1. 1.Department of Pathology, Sol Goldman Pancreatic Cancer Research CenterJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Abramson Cancer Center, Abramson Family Cancer Research Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations